

Belle II Results from the Phase II Run and Prospects for the Full Physics Runs

F. Bianchi

INFN and University of Torino

Rencontres du Vietnam - Windows on the Universe August 5-11, 2018 – ICISE – Quy Nhon, Vietnam

ALMA UNIVERSITAS TAURINENSIS

Outline

- Introduction
- The SuperKEKB collider
- The Belle II detector
- First Results
- Summary

A Threefold Approach in the Quest for New Physics

Cosmic Frontier

Intensity Frontier

8/7/18

The Legacy of the B-factories

"The Physics of the B Factories", EPJC 74, 3026 (2014)

- Flavor physics
 - CKM matrix elements / Unitarity Triangle
 - CPV in B decays
- Spectroscopy
 - Exotic guarkonium
- Limits on BSM Physics
 - Rare decays
 - New physics search in loops $b \rightarrow s\gamma$, $b \rightarrow sll$
 - B->D^(*)τν
 - Search for LFV in τ decays

"for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature".

Makoto Kobayashi

Toshihide Maskawa

Belle II: an Experiment at the Intensity Frontier

- Searches for effects of new particles in loop diagrams with huge data samples.
 - Related observables can deviate from the SM prediction.

Belle II will collect 50 ab⁻¹ of data, which is x50 of Belle (1 ab⁻¹). Belle II is sensitive to new physics up to an energy scale of ~20 TeV.

SuperKEKB and Belle II

SuperKEKB: the Nano Beam Scheme

7

SuperKEKB Commissioning

- Phase 1 (finished): Beam operation without final focus magnets and Belle II
 - Commissioning of beam transportation and vacuum scrubbing
 - Only single beam studies were possible
- Phase 2(4month): Start data taking with beam collision
 - Target Luminosity ~10³⁴ cm⁻²s⁻¹ which is comparable with KEKB
 - No final VXD but one ladder/layer with background sensors
- Phase 3 (2019): final detector configuration

Phase II Run: the Nano Beam Scheme in Action

First collisions on April 26 β^* successfully squeezed down to $\beta^*=2mm$ $L = 5.54 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ $L_{\text{spec}} = 2 \times 10^{31} \text{ cm}^{-2}\text{s}^{-1}$ Integrated Luminosity (online): 500 pb⁻¹

An Event from Belle II's First Evening

 $e^+e^- \rightarrow \gamma^* \rightarrow BB$

Detector Challenges @ High Luminosity

- Higher background:
- \rightarrow radiation damage, occupancy \rightarrow VTX (also closer to the beam pipe), background in EMC
- Higher event rate:
- \rightarrow trigger, DAQ, computing
- Lesser boost of the B Mesons
- -> need a better vertex resolution
- Improvement to low momentum particle reconstruction and ID, and to hermeticity
- Detector had to be upgraded for SuperKEKB conditions to achieve equal or better performance than at KEKB

Belle II Detector

Vertex Detector

Central Drift Chamber

Most of the Belle II detector subsystems are working well Here are some *signals* involving charged tracks.

M(e⁺e⁻) (GeV/c²)

Electromagnetic Calorimeter

Most of the Belle II detector subsystems are working well. Some nice examples of *signals* involving **photons**.

8/7/18

K_L and μ Detector

- Barrel: Belle RPCs reused Two inner layers replaced by scintillator strips Scintillator strips with WLS fibers Hamamatsu SiPM S10362
- Endcap: RPCs replaced with polystyrene scintillators
 99% geometrical acceptance. σ ~ 1ns

Particle Identification @ Belle II

TOP Particle Identification

$$D^{*+} \rightarrow D^0 \pi_s^{+}; D^0 \rightarrow K^- \pi^+$$

N.B. The charge correlation with the slow π determines which track is the K (or π)

Kinematically identified K from a D^{*+} in the TOP; Cherenkov x vs t pattern (mapping of the Cherenkov ring)

No kaons identified

One kaon identified in the TOP.

Rediscovery of $D_s \rightarrow \varphi \pi^+$, with $\varphi \rightarrow K^+ K^-$

8/7/18

Belle II Level 1 trigger (CDC + ECL +TOP + KLM) beam bunch crossing 254 MHz (max.) nominal beam background rate ~10 MHz nominal L1 trigger rate ~20 KHz L1 max. latency 5 µs L1 z-vertex trigger L1 Global Reconstruction Logic

HLT: software trigger on a dedicated farm HLT output rate 6 KHz (1.8 GB/s)

FIG. 36: ΔM (left) and M_D (right) signal-enhanced projections in 250 pb⁻¹ prod4 data sample for $D \to K_S^0 \pi^0$ final state.

Also illustrates some of the important capabilities of Belle II.

We have rediscovered the B meson!

Summary

- Belle II will explore New Physics on the Luminosity or Intensity Frontier. This is different and complementary to the LHC high $p_{\rm T}$ experiments, which operate on the Energy Frontier.
- There is competition and complementarity with LHCb
- We are ready to start a long physics run in the Super Factory mode. This requires *high-efficiency* datataking by Belle II and <u>extensive running</u> by Super KEK-B, soon to be the world's highest luminosity accelerator.

The Geography of the International Belle II collaboration

This is <u>rather unique</u> in Japan and Asia. The only comparable example is the T2K experiment at JPARC, which is also an <u>international</u> collaboration

8/7/18

Machine Parameters

					КЕКВ
2017/September/1	LER	HER	unit		achieved
E	4.000	7.007	GeV		
I	3.6	2.6	А		
Number of bunches	2,5	00			
Bunch Current	1.44 1.04		mA		
Circumference	3,016	5.315	m		
ε _x /ε _y	3.2(1.9)/8.64(2.8)	4.6(4.4)/12.9(1.5)	nm/pm	():zero current	
Coupling	0.27	0.28		includes beam-beam	
β_x^*/β_y^*	32/0.27	25/0.30	mm		$\beta_{y}^{*}\sim 6mm$
Crossing angle	8	3	mrad		
α _p	3.20x10 ⁻⁴	4.55x10 ⁻⁴			
σδ	7.92(7.53)x10 ⁻⁴	6.37(6.30)x10 ⁻⁴		():zero current	
Vc	9.4	15.0	MV		
σ _z	6(4.7)	5(4.9)	mm	():zero current	
Vs	-0.0245	-0.0280			
v_x/v_y	44.53/46.57	45.53/43.57			
U ₀	1.76	2.43	MeV		
τ _{x,y} /τ _s	45.7/22.8	58.0/29.0	msec		
ξ _× /ξ _γ	0.0028/0.0881	0.0012/0.0807			
Luminosity	8x1	1035	cm ⁻² s ⁻¹		2.1 x 10 ³⁴

8/7/18

Welcome to the world of large crossing angle nano-beams !

As expected, the effective bunch length is *reduced* from ~10 mm (KEKB) to 0.5 mm (SuperKEKB)

We measure this in two track events in Belle II data.

How do we measure the vertical height of nanobeams ? Ans: Width of Luminosity scans with diamond detectors

At Phase 2 peak luminosity of 5 x 10^{33} /cm²/sec, the vertical spot is ~700nm high. There is still beam-beam blowup at high currents. At low currents, the vertical spot size is 330 nm high (the final goal is <u>O(50nm) with full capability of the QCS</u> system).

8/7/18

Phase 2 Run

8/7/18

Onwards to Phase 3 and the Physics Run

The VXD will be installed in Phase 3. Restart Belle II data taking in February 2019.

PXD layer 1 ladders First PXD half-shell being tested at DESY SVD +x half-shell, Jan 2018

SVD -x half-shell, July 2018

Endcap particle identification via Aerogel RICH (ARICH)

The B-anti B meson pairs at the Upsilon(4S) are produced in a <u>coherent</u>, *entangled* **quantum mechanical state**.

 $|\Psi >= |B^{0}(t_{1},f_{1})\overline{B^{0}}(t_{2},f_{2}) > -|B^{0}(t_{2},f_{2})B^{0}(t_{1},f_{1}) >$

Need to measure decay times to observe CP violation (particleantiparticle asymmetry).

One B decays \rightarrow collapses the flavor wavefunction of the other anti-B. (Exercise: Also one B must decay before the other can mix)

Physics Competition and Complementarity

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		Run III				Run IV				Run V				
LS2						LS3					LS4			
LHCb UPGR	40 MHz RADE I	$L = 2 x 10^{33}$		LHCb Consolidate: Upgr Ib		$L = 2 x 10^{33} 50 fb^{-1}$		LHCb UPGRADE II		$ L=1-2x \ 10^{34} \\ 300 \ fb^{-1} $				
ATLAS Phase I	ATLAS Phase I Upgr $L = 2 \times 10^{34}$		ATLAS Phase II UPGRADE		$HL-LHC$ $L = 5 x 10^{34}$		ATLAS		$\frac{\text{HL-LHC}}{L = 5 \times 10^{34}}$					
CMS Phase I	Upgr	r 300 fb ⁻¹		CMS Phase II UPGRADE				CMS		3000 fb ⁻¹				
Belle II	5 ab ⁻¹		L = 8	x 10 ³⁵	50 0	ab-1		LHC schedule: Frederick Bordry, Jun 2015						un 2015
	Belle	П					2016		2017		2018		2019	
 L=5x10³³ cm⁻²s⁻¹ achieved! Physics with VXD in 2019 					d!	Phase 1		Phase 2 Phase 3						
						April 2018: Beam collisions with QCS. VXD not yet installed Expected luminosity: 20 fb ⁻¹								
R. Cheaib, Moriond, 12 Mar 2018, arXiv:1802.01360										2.01366				

Outside perspective: Plenary talk by Niels Tuning, ICHEP 2018 in Seoul, Korea

Examples of Physics Competition and Complementarity

How can we establish NP in $B \rightarrow K^* l^{-}l^+$?

Ans: Observe and measure the rate for $B \rightarrow svv$ and thus isolate the Z penguin (C₉) at *Belle II* Answer from Buras et al.

TABLE I: Projections	for the statistical	uncertainties on	the $B \to K^{(*)} \nu \bar{\nu}$	branching fractions.
----------------------	---------------------	------------------	-----------------------------------	----------------------

Mode	$B[10^{-6}]$	Efficiency	N _{Backg} .	N _{Sig-exp.}	N _{Backg} .	N _{Sig-exp.}	Statistical	Total	
		Belle	711 fb ⁻¹	711 fb ⁻¹	$50 ab^{-1}$	50 ab-1	error	Error	
		$[10^{-4}]$	Belle	Belle	Belle II	Belle II	$50 {\rm ~ab^{-1}}$		
$B^+ \rightarrow K^+ \nu \bar{\nu}$	3.98	5.68	21	3.5	2960	245	23%	24%	
$B^0 \to K^0_{ m S} \nu \bar{\nu}$	1.85	0.84	4	0.24	560	22	110%	110%	
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	9.91	1.47	7	2.2	985	158	21%	22%	
$B^0 \to K^{*0} \nu \bar{\nu}$	9.19	1.44	5	2.0	704	143	20%	22%	
$B \to K^* \nu \bar{\nu}$ combined 15% 17%									

What's Ahead?

View in r-z

8/7/18

"Missing Energy Decay" in a Belle II GEANT4 MC simulation Signal: $B \rightarrow K \nu \nu$ tag mode: $B \rightarrow D\pi$; $D \rightarrow K\pi$

Zoomed view of the vertex region in r--phi

NP in $b \rightarrow s |+|^{-}$

Prepared by D. Straub et al. for the Belle II Physics Book (edited by P. Urquijo and E. Kou)

Belle II can do both <u>inclusive</u> and exclusive. Equally strong capabilities for electrons and muons.

Results from Global Fits to Data (CKMFitter Group)

More examples of Physics Competition and Complementarity

Uses publicly available LHCb projections.

<u>Belle II will push many limits below 10⁻⁹</u>; LHCb, CMS and ATLAS have very *limited* capabilities.

> LHC high pt: The modes $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu$ h+hprovide important constraints on H $\rightarrow \mu \tau$

FIG. 5: Projected precision for various measurements of direct CP violation.

"Tsukuba, we have a Problem"

(apologies to Tom Hanks, Apollo 13)

