Rare b-decays and tests of lepton flavour universality

Lars Eklund on behalf of the LHCb Collaboration

Experimental overview

Results from Babar, Belle, ATLAS, CMS and LHCb

University of Chinese Academy of Sciences

lepton flavour universality tests

baryon

number

violation

0

L. Eklund

Processes at many different energy scales 0.2 GeV ... 4 GeV ... 80 GeV ... 10-100 TeV Λ_{BSM} $\Lambda_{\rm b}$ Λ_{EW} Λ_{QCD} (non-perturbative) b mass W mass **BSM** scale Example of SM terms i = 7Described by an effective Hamiltonian - O_i (Operators): long-distance, non-perturbative physics - C_i (Wilson coefficients): short distance, high energy physics BSM processes may modify these coefficients i = 9 $H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \left[\mathcal{C}_i(\mu) \mathcal{O}_i(\mu) + \mathcal{C}'_i(\mu) \mathcal{O}'_i(\mu) \right]$ right handed left handed (suppressed in the SM)

Rare decay observables

Lepton flavour non-universality

- Compare the decay rates of e^{\pm} and μ^{\pm} modes

- BSM processes can modify the effective Hamiltonian by
 - Modifying Wilson coefficients of operators present in SM
 - Introducing new operators
 - Making Wilson coefficients dependent on the lepton flavour

- Fully leptonic decays
 - $\quad B^0_{(s)} \to \mu^+ \mu^-$
- FCNC $b \rightarrow sl^+l^-$ transitions ($B^0 \rightarrow K^*\mu^+\mu^-$ and friends)
 - Differential branching ratios & angular analysis
 - Global fits to Wilson coefficients
- Lepton flavour universality test ($l^{\pm} = e^{\pm}, \mu^{\pm} \text{ or } \tau^{\pm}$)
 - FCNC $b \rightarrow sl^+l^-$ transitions
 - $B^0 \rightarrow K^{(*)}l^+l^-$
 - Semi-leptonic $b \rightarrow c l^- \bar{\nu}_l$ transitions
 - $B \rightarrow D \ l^+ \nu_l$
 - $B_c^+ \rightarrow J/\psi \, l^+ \nu_l$
- Outlook

Fully leptonic final states

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$

- Very precise predictions available
 - Only C₁₀ contribute in the SM: $BR(B_q \rightarrow l^+l^-) \propto m_l^2 \left| 1 \frac{4m_l^2}{m_{B_q}^2} |C_{10}|^2 \right|^2$

 $\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}} = (3.52 \pm 0.15) \times 10^{-9},$

BR
$$(B^0 \to \mu^+ \mu^-)_{SM} = (1.12 \pm 0.12) \times 10^{-10}$$

Prog. Part. Nucl. Phys 92 (2017) 50

- BSM scalar & pseudo-scalar operators may contribute
 - Change in decay rate
 - Mixing induced CP violation
- LHCb & CMS: Run 1 dataset
 - Observation of $B_s^0 \rightarrow \mu^+ \mu^-$ (6.2 σ)
 - Evidence for $B^0 \rightarrow \mu^+ \mu^-$ (3.0 σ)

 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) = (3.0^{+1.6}_{-1.4}) \times 10^{-10}$

- ATLAS: 25 fb⁻¹ run I
 - First ATLAS result on $B_{(s)}^0 \to \mu^+ \mu^ \mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$ Significance: 1.4 σ (3.0 expected from SM) $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10}$ (95 % CL)
- LHCb 3+1.4 fb⁻¹ run I+II
 - First single experiment observation
 - 7.9 σ significance $B^0_{(s)} \to \mu^+\mu^ \mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.0 \pm 0.6^{+0.3}_{-0.2}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+\mu^-) < 3.4 \times 10^{-10}$
 - Effective lifetime of $B^0_{(s)} \rightarrow \mu^+\mu^ \tau(B^0_s \rightarrow \mu^+\mu^-) = 2.04 \pm 0.44 \pm 0.05 \text{ ps}$

Electroweak b \rightarrow s I⁺ I⁻ transitions

 $B^0 \rightarrow K^* \mu^+ \mu^-$ and friends

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ differential BR versus di-muon invariant mass

- LHCb 3 fb⁻¹ run I
 - $B^0 \to K^{*0} \mu^+ \mu^-$ JHEP 11 (2016) 047
 - Discrepancy with SM in low q² region Compatible with LHCb and SM

- Similar mild discrepancy at low q² in
 - $B^0 \rightarrow K^0 \mu^+ \mu^-$
 - $B^+ \to K^+ \mu^+ \mu^-$ JHEP 06 (2014) 133: 1 fb⁻¹
 - $B^+ \rightarrow K^{*+} \mu^+ \mu^-$
 - $\Lambda_b \to \Lambda^0 \mu^+ \mu^-$ JHEP 06 (2015) 115: 3 fb⁻¹
 - $B_s^0 \to \phi \mu^+ \mu^-$ JHEP 09 (2015) 179: 3 fb⁻¹

- CMS: 20.5 fb⁻¹ run I
- $B^0 \to K^{*0} \mu^+ \mu^-$ Phys. Lett. B 753 (2016) 424

- Angles defined in B meson rest frame
 - Angular variables: $\theta_{\nu} \theta_{\kappa} \& \Phi$
 - Di-lepton invariant mass²: q²
 - Fit PDF for $B^0 \rightarrow K^* \mu^+ \mu^-$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_l \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$$

- Form-factor uncertainties in the predictions of observables
 - Alternative set of 7 observables with reduced uncertainties: $P_i^{(\prime)}$

For instance:

$$P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$

L. Eklund

JHEP02 (2016) 104

- LHCb: 3 fb⁻¹ run I data set
 - Full angular analysis $B \to K^* \: \mu^{\scriptscriptstyle +} \: \mu^{\scriptscriptstyle -}$
 - Local SM deviation in P'_5
 - 2.8σ in 4 < q² < 6 GeV²/c⁴
 - 3.0σ in 6 < q² < 8 GeV²/c⁴
- Belle: 711 fb⁻¹ full data set
 - Both e^{\pm} and μ^{\pm} modes
 - Local SM deviation in P'_5
 - 2.6 σ from SM in 4 < q² < 8 GeV²/c⁴ for the muon mode
 - e[±] mode consistent with SM
- $B \rightarrow K^* \mu^+ \mu^-$ angular analysis
 - ATLAS 20.3 fb⁻¹: Submitted to JHEP
 - CMS: 20.5 fb⁻¹: Phys. Lett. B 781 (2018) 517
 - Compatible with SM, LHCb & Belle

- LHCb $\Lambda_b \rightarrow \Lambda^0 \mu^+ \mu^-$ angular analysis
 - 5 fb⁻¹ (2011-2016) Submitted to JHEP
 - Angular moments (K_i) at high q^2
 - Compatible with SM

- $B^{+/0} \rightarrow K^{+/0} \mu^+ \mu^-$ angular analyses
 - Different parametrisation: $A_{FB} \& F_{H}$
 - CMS 20.5 fb⁻¹: <u>Submitted to Phys. Rev. D</u>
 - LHCb 3 fb⁻¹: <u>JHEP 05 (2014) 082</u>
 - Compatible with SM

- Is there a pattern in these deviations?
- Global fits of Wilson coefficients
 - Approximately 100 observables
 - $B^0_{(s)} \rightarrow \mu^+ \mu^-$ and $b \rightarrow s \gamma$ BR
 - $b \rightarrow s l^+ l^-$ BR & angular observables
 - Several global fits in literature
 - Fits prefer BSM contribution to C_9
 - 3-5 σ from SM depending on constraints
- Possible interpretations
 - BSM physics contributions
 - e.g. lepto-quarks or a Z'
 - Limits in our understanding of QCD
 - E.g. contributions from charm loops

$$H_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_{i} \begin{bmatrix} \mathcal{C}_i(\mu) \mathcal{O}_i(\mu) + \mathcal{C}'_i(\mu) \mathcal{O}'_i(\mu) \end{bmatrix}$$

Lepton flavour universality

Ratios of branching ratios – comparing lepton flavour

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^{+}\mu^{-})}{\mathcal{B}(B \to K^{(*)}e^{+}e^{-})} \qquad \qquad R_{D^{(*)}} = \frac{\mathcal{B}(B \to D \tau^{+}\nu_{\tau})}{\mathcal{B}(B \to D l^{+}\nu_{l})}$$

- Lepton flavour universality test
 - Close to unity in SM
- Measurements by Belle & Babar
 - Combines B⁰ & B⁺ ratios
 - R_K and R_{K^*} for different q² ranges
 - Consistent with SM prediction
- LHCb 3 fb⁻¹ run I: R_K <u>PRL 113 (2014)151601</u> – Measured as a double ratio

$$R_{K} = \frac{\mathcal{B} (B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} J/\psi \ (\to \mu^{+} \mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+} J/\psi \ (\to e^{+} e^{-}))}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}$$

$$R_K = 0.745^{+0.090}_{-0.074} \,(\text{stat}) \pm 0.036 \,(\text{syst})$$

• 2.6 σ deviation from SM

$$R_{K^{(*)}} = \frac{\mathcal{B}(B^{0/+} \to K^{0/+(*)}\mu^+\mu^-)}{\mathcal{B}(B^{0/+} \to K^{0/+(*)}e^+e^-)}$$

10 August 2018

- LHCb: 3 fb⁻¹ run I: R_{K^*}
 - Tension with SM
 - 2.1-2.3σ in 0.045 < q² < 1.1 GeV²/c⁴
 - 2.2-2.4 σ in 1.1 < q² < 6.0 GeV²/c⁴

$$R_{K^*} = \frac{\mathcal{B}(B^0 \to K^{0*} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{0*} e^+ e^-)}$$

- Fit to Wilson coefficients
 - Allowing for $C_{ie}^{NP} \neq C_{i\mu}^{NP}$
 - 3.5σ from SM
 - Preference for $C_{9\mu}^{NP} \neq 0$

L. Eklund

- LFU ratios for semi-leptonic $D^{(*)}$ decays
- R_D measurements
 - Belle & Babar
 - Hadronic tag, $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
- R_{D*} measurements
 - Belle & Babar
 - Hadronic tag, $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
 - Belle
 - Hadronic tag, $\tau^- \rightarrow \pi^- v_{\tau}, \tau^- \rightarrow \rho^- v_{\tau}$
 - Semi-leptonic tag, $\tau^- \rightarrow l^- \bar{\nu}_l \nu_\tau$
 - LHCb 3 fb⁻¹ (run I)
 - $\tau^- \rightarrow l^- \bar{\nu}_l v_\tau$
 - $\tau^- \rightarrow \pi^- \pi^+ \pi^- v_\tau$

- Tension with SM prediction
- 2.3 σ in R_D
- 3.0 σ in R_{D^*}
- 3.80 combined

L. Eklund

- Similar decay, change of spectator quark
 - c-quark instead of u- or d-quark

$$R_{J/\psi} = \frac{\mathcal{B}(B_c^+ \to J/\psi \,\tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \,\mu^+ \nu_{\mu})}$$

• LHCb 3 fb⁻¹ (run 1) <u>PRL 120 (2018) 121801</u> - $\tau^- \rightarrow l^- \bar{\nu}_l v_{\tau}$

 $R_{J/\psi} = 0.71 \pm 0.17(stat) \pm 0.18(syst)$

- SM prediction: 0.25 0.28
 - Compatible within 2σ

Outlook

Many exciting results in the years to come

10 August 2018

- LHCb results almost exclusively from 3 fb⁻¹ Run I data
 - 9 fb⁻¹ expected at the end of Run II
 - Doubled signal yield/fb⁻¹ due to increased $b\bar{b}$ cross section

			<u>CLINI-LIICC-2017-005</u>		
	LHC	Period of	Maximum \mathcal{L}	Cumulative	
	Run	data taking	$[{\rm cm}^{-2}{\rm s}^{-1}]$	$\int \mathcal{L} dt [\mathrm{fb}^{-1}]$	
Current detector	1 & 2	$2010 – 2012, \ 2015 – 2018$	4×10^{32}	9	
Phase-I Upgrade	3 & 4	$2021 - 2023, \ 2026 - 2029$	$2 imes 10^{33}$	50	
Phase-II Upgrade	$5 \rightarrow$	2031–2033, 2035 \rightarrow	$2 imes 10^{34}$	300	

- LHCb Phase-I upgrade (5x current luminosity)
 - Remove H/W trigger 40 Mhz readout
 - Doubles signal yield/fb⁻¹ for hadronic channels
 - Data taking from 2021
- LHCb Phase-II upgrade (50x current luminosity)
 - Major detector upgrade
 - Eol submitted: <u>CERN-LHCC-2017-003</u>
 - Physics case in preparation: LHCb-PUB-2018-009

CEDNI14CC 2017 003

Expression of Interest

Belle II, ATLAS & CMS

- Babar & Belle datasets
 - 550 + 1000 fb⁻¹
- Belle II: 50 ab⁻¹
 - First collisions achieved in 2018
 - Physics data taking end of this year
 - Belle II talks:
 - F. Bianchi (today), O. Hartbrich (Wed.)
- ATLAS & CMS: results from 20-25 fb⁻¹
 - ~ 140 fb⁻¹ on tape
 - Expect ~300 fb⁻¹ by 2023
 - CMS 2018 data taking:
 - New high-rate b-physics trigger
 - R_K and other measurements
 - 3 ab⁻¹ for the sLHC upgrade era
 - Many important results are expected

SuperKEKB luminosity projection

10 August 2018

	EPS-HEP 2017 talk by S. Falke			
Belle II: R_D , R_{D^*} & R_K		Current precision	Belle II 5 ab ⁻¹	Belle II 50 ab ⁻¹
$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ sb}^{-1}} + \sigma_{irred}^2}$	R_D	12%	5.6%	3.2%
V 50 ab	R_{D^*}	5.4%	3.9%	2.2%
	R_{K}	12%	7%	2%

• LHCb Phase I & II upgrades

• See e.g. ATL-PHYS-PUB-2018-005

arXiv:1002.5012 and

- Rare B-decays are an excellent probe for BSM physics
- $b \rightarrow s l^+ l^-$ branching ratios & angular observables
 - Intriguing deviations from SM predictions
 - Pattern in the deviation emerges
- Lepton flavour universality test: $R_{K^{(*)}}$ and $R_{D^{(*)}}$
 - Many other LFU ratios available: $R_{pK},\,R_{\Phi},\,R_{\Lambda},\,R_{K\pi\pi},\,R_{Ks}$, R_{Ds}

$$R_{K^{(*)}} = \frac{\mathcal{B}(B^{0/+} \to K^{0/+(*)}\mu^+\mu^-)}{\mathcal{B}(B^{0/+} \to K^{0/+(*)}e^+e^-)} \qquad \qquad R_{D^{(*)}} = \frac{\mathcal{B}(B^{0/-} \to D^{0/-(*)}\tau^+\nu_{\tau})}{\mathcal{B}(B^{0/-} \to D^{0/-(*)}l^+\nu_{l})}$$

- Many new exciting results are expected
 - Data already recorded (LHCb, ATLAS & CMS)
 - Upgraded detectors (Belle II & LHCb upgrades)

Backup slides

- LHCb update: 3 fb⁻¹ (run I) + 1.4 fb⁻¹ (run 2) PRL 118, 191801 (2017)
- New observable sensitive to CP violation
 - $A_{\Delta\Gamma} = 1$ in SM (i.e. no CPV)

$$\tau_{eff} = \tau_{B_H} = 1.619 \pm 0.009$$

De Bruyn et al., PRL 109, 041801 (2012)

- Larger branching ratio due to the larger mass
- Additional enhancement possible in BSM scenarios that violate LFU $\overline{BR}(B_s \to \tau^+ \tau^-)_{SM} = (7.46 \pm 0.30) \times 10^{-7}, \qquad BR(B^0 \to \tau^+ \tau^-)_{SM} = (2.35 \pm 0.24) \times 10^{-8}$
 - Experimentally challenging: multiple neutrinos in the final state
- LHCb 3 fb⁻¹ run 1 PRL 118, 251802 (2017)
 - Hadronic: $\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu_{\tau}$
 - Normalisation
 - $B_s^0 \to D^-(\to K^+\pi^-\pi^-)D_s^+ (\to K^+\pi^-\pi^-)$ $\mathcal{B}(B_s^0 \to \tau^+\tau^-) < 6.8 \times 10^{-3} \text{ at } 95\% \text{ CL}$ $\mathcal{B}(B^0 \to \tau^+\tau^-) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ CL}$
- BaBar 232M $B\overline{B}$ events
 - 1-track: $\tau^- \rightarrow \pi^- \nu_{\tau}$, $\varrho^- \nu_{\tau}$, $e^- \bar{\nu}_e \nu_{\tau}$, $\mu^- \bar{\nu}_{\mu} \nu_{\tau}$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 4.1 \times 10^{-3}$$

- LHCb: differential branching fractions in several $b \rightarrow s l^+ l^-$ modes
 - Versus di-muon invariant mass squared: q²

Discrepancy in the low di-muon invariant mass region

10 August 2018

L. Eklund

CMS $B^0 \rightarrow K^{*0}\mu^+\mu^-$ differential branching ratio and angular analysis

20.5 fb⁻¹ (8 TeV) CMS Data sm, lcsr \rangle $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ CMS: 20.5 fb⁻¹ run l dB / d q^2 (10⁻⁸ imes GeV 10 (SM, Lattice) - $B^0 \rightarrow K^{*0}\mu^+\mu^-$ Phys. Lett. B 753 (2016) 424 8 Compatible with SM & LHCb results — 2 0 12 2 6 8 10 18 14 16 a² (GeV²) CMS 20.5 fb⁻¹: $B^0 \rightarrow K^{*0}\mu^+\mu^-$ **ئ**ە 1.5 + CMS + LHCb * Belle 0.5 SM-DHMV 0 -0.5 -1.5<u></u>___ 2 6 8 10 12 14 16 18 20 q^2 (GeV²)

L. Eklund

- LHCb: 3 fb⁻¹ run l
 - Particular interest in the low q² region
 - Sensitivity to photon polarisation
 - Wilson coefficients C₇ & C₇'
 - Folded angular distributions
 - Increase sensitivity for low yields
 - 4 observables

- Belle full dataset PRL 211802 (2017)
 - Complementary observable
 - Hadronic tag, $\tau^- \rightarrow \pi^- v_{\tau}, \tau^- \rightarrow \rho^- v_{\tau}$
- Polarisation of τ^-

$$P_{ au}(D^*) = rac{\Gamma^+(D^*) - \Gamma^-(D^*)}{\Gamma^+(D^*) + \Gamma^-(D^*)}$$

- $\Gamma^{\pm}(D^*)$: decay rate with τ helicity $\pm \frac{1}{2}$
- Differential BR

$$\frac{d\Gamma(D^{*})}{d\cos\vartheta_{hel}} = \frac{\Gamma(D^{*})}{2} \left[1 + \alpha P_{\tau}(D^{*})\cos\vartheta_{hel}\right]$$
$$\tau \to \pi \nu_{\tau} \ (\alpha = 1)$$
$$\tau \to \rho \nu_{\tau} \ (\alpha = 0.45)$$

 $\frac{Result:}{P_{\tau}^{SM} = -0.497 \pm 0.013}$ $P_{\tau} = -0.38 \pm 0.51^{+0.21}_{-0.16}$

Compatible with SM

- Example of BSM model that would influence $R_{D^{(*)}}$
 - 2-Higgs-dublet model Type II
 - Parametrised by $\tan(\beta)/m_{H^+}$
 - Affects both measured and predicted $R_{D^{(*)}}$

Comparison with Belle hadronic result

10 August 2018

L. Eklund