DARK MATTER AT THE LHC

Vasiliki Kouskoura on behalf of ATLAS, CMS and LHCb Collaborations

25th Rencontres du Vietnam 2018

Evidence for Dark Matter

Astrophysical observations point to the existence of Dark Matter (DM)

Galaxy rotation curves show something invisible holds the stars in observed orbit

Gravitational lensing: light rays being bent by DM gravitational field

Two galaxies collide, leaving behind the interacting gas, while the DM of both galaxies passed through

Search Strategies

Direct

Signals from nuclei kicked on by DM particle

Indirect

- Signs of annihilation of DM; SM products detected by telescopes
- Collider
- DM produced in high energy particle interactions

* Underlying assumption: DM has nongravitational interaction with SM particles

So what is Dark Matter?

- Particle Physicists need to fit Dark Matter into a particle description of Nature
 - Barely interacts with ordinary matter (e.g. WIMPs weakly interacting massive particles)
 - Massive
 - Stable or with a lifetime of order of the life of the universe
- For the moment no particle was found to be consistent with a DM candidate

Illustration of the sea of various dark matter candidates

Theoretical Models for Dark Matter

Vasiliki Kouskoura (BNL)

Vietnam2018

Signatures in the detector

Missing transverse energy E^T_{miss}

- Number of searches rely on large E^T_{miss} balancing against visible objects (jets, boosted jets, b-jets, photons, charged leptons)
- Understanding E^T_{miss} is not an easy task

Mono-X searches: an easy way to search for DM at the LHC

Χ

Mono-X searches: an easy way to search for DM at the LHC

Mono-Jet event

ATLAS-CONF-2017-060

5-11 August 2018

10

Mono-X searches: an easy way to search for DM at the LHC

Vasiliki Kouskoura (BNL)

Vietnam2018

5-11 August 2018

11

Mono-Jet analysis

Event Selection

^{*}example from ATLAS analysis

CR after fit to data

Main Backgrounds

- Z+jets, W+jets
- Estimated from data control regions

Vasiliki Kouskoura (BNL)

Vietnam2018

Mono-Jet analysis

- Simultaneous fit to control and signal regions
- No excess in data compared to expectations from predictions
- Exclusion limits

 m_{χ} [GeV]

1000

500

Vasiliki Kouskoura (BNL)

JHEP 01 (2018) 126

1000

2000

 $m_{Z_{\Delta}}$ [GeV]

2500

2000

 m_{med} [GeV]

1000

1500

500

0

Dark Matter in association with Higgs boson in ATLAS & CMS

Event selection

- diphoton trigger
- fit to the diphoton mass spectrum
- signal and bkg shapes

Vasiliki Kouskoura (BNL)

Backgrounds

- resonant backgrounds from Higgs boson (MC)
- non resonant background due to γγ and EW processes (data)

A: pseudoscalar

Event selection and Backgrounds

- E^Tmiss trigger
- Resolved and merged SR
- Z+jets, W+jets, top from data

Vietnam2018

Dark Matter in association with Higgs boson in ATLAS & CMS

Exclusion contours for the Z'-2HDM scenario in the (mZ'-mA) plane for DM associated production with a Higgs boson

ATLAS-CONF-2018-039

CMS-EXO-16-055

Expected and observed 95% CL upper limits on the Z'-2HDM cross section for DM associated production with a Higgs boson

Vasiliki Kouskoura (BNL)

Vietnam2018

Dark Matter plus Heavy Flavor

Signal regions and Backgrounds

- various SRs for different models
- Z+jets and ttbar dominant backgrounds estimated from CRs from data and validated in different regions EPJ C 78 (2018) 18

model-independent fit with CRs and SRs

Dijet searches for mediators: bumps on high mass tails

Trigger level analysis in ATLAS

Event Selection and Backgrounds

- di-jet events with at least two trigger-level jets (pT>85 GeV)
- searches for resonance 700 < mjj < 1800 GeV with |y*|<0.6 and mjj>450 GeV with |y*|<0.3
- sliding window fit to determine the SM bkg

- Innovative data-taking approach developed by the LHCb collaboration, used by CMS and ATLAS
- TLA allows for data taking at a peak rate twice the total rate of events using less than 1% of total trigger bandwidth

EXOT-2016-20

$y^* = (y_1 - y_2)/2$

18

New particles decaying to a jet and an emerging jet

Event Selection and Background

- trigger based on transverse momenta of jets
- emerging jet: multiple displaced vertices (multiple tracks with large impact parameter)
- 4 jets and pass thresholds on scalar sum of jets pT (H_T)

CMS-PAS-EXO-18-001

Search for prompt-like and long-lived dark photons with LHCb

mesondecay

 $\sqrt{s} = 13 \,\mathrm{TeV}$

LHCb

10⁷

10⁶

10⁵

10⁴

 10^{3}

 10^{2}

Event Selection and Backgrounds

- high-pT muon triggers
- consistent with originating from PV

prompt $\gamma^* \rightarrow \mu^+ \mu^-$ (irreducible)

- resonant decays to µ+µ-
- various mis-reconstructed objects

LHCb-PAPER-2017-038

Candidates $/\sigma[m(\mu^+\mu^-)]/2$ 10³ first limits above 10 GeV

prompt-like mass spectrum used to search for A'

Drell-Yan

10⁴

prompt-like sample

 $p_{\rm T}(\mu) > 1 \,{\rm GeV}, p(\mu) > 20 \,{\rm GeV}$

 $\mu_Q \mu_Q$

 $hh + h\mu_Q$

prompt $\mu^+\mu^-$

 $m(\mu^+\mu^-)$ [MeV]

expected to be produced via

 \Rightarrow isolation

applied

Vasiliki Kouskoura (BNL)

Vietnam2018

Search for prompt-like and long-lived dark photons with LHCb

Event Selection and Backgrounds

long-lived A' search

Vasiliki Kouskoura (BNL)

Vietnam2018

Excluded regions in a DM mass-mediator mass plane

Regions in a dark matter mass-mediator mass plane excluded at 95% CL by a selection of ATLAS dark matter searches, for one possible interaction between the Standard Model and dark matter, the leptophobic axial-vector mediator. The exclusions are computed for a dark matter coupling gDM = 1.0, a quark coupling gq = 0.25 universal to all flavors, and lepton coupling gl set to zero

> https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/EXOTICS/

95% CL observed and expected exclusion regions in mMed-mDM plane for di-jet searches and different MET based DM searches from CMS in the lepto-phobic Axial-vector model. The exclusions are computed for a universal quark coupling of $g_q =$ 0.25 and for a DM coupling of gDM = 1.0

https://twiki.cern.ch/twiki/bin/view/CMSPublic/ SummaryPlotsEXO13TeV

Vasiliki Kouskoura (BNL)

5-11 August 2018

22

4500

Comparison to Direct detection experiments

Spin-Independent DM-nucleon cross-section

Spin-dependent DM-proton cross-section

- Collider searches complement DD experiments for DM masses below 5GeV for spin-independent DM-nucleon cross-section
- Strong limits for spin-dependent DM-proton cross-section

Exclusion limits for (pseudo-)scalar mediator mass

Exclusion limits for color-neutral ttbar/bbbar + a pseudo scalar models as a function of the mediator mass for a DM mass of 1 GeV. Limits calculated at 95% CL and expressed in terms of the ratio of the excluded crosssection to the nominal cross-section for a coupling assumption of $g=g_q=g_x=1$

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ SupersymmetryPublicResults

95% CL observed (full-line) and expected (dashed-line) exclusion limits for the Scalar model as a function of Mmed for different MET based DM searches from CMS. The exclusions are computed for quark coupling of $g_q = 1.0$ and for a DM coupling of gDM = 1.0

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryPlotsEXO13TeV

Conclusions

- Experiments at the LHC have a large program on Dark Matter searches which expand also on Dark Sector searches
- No hint for a DM candidate from these searches
- Extend exclusion limits on the DM candidate and mediator masses
- Looking forward to exploit the rich LHC dataset for more results!

back-up slides

