DARK MATTER: ALTERNATIVE TO WIMPS

Michel H.G. Tytgat Université Libre de Bruxelles Belgium

Windows on the Universe, 25th Rencontres du Vietnam, Quy Nhon, August 5-11 2018

Cửa số đến với Vũ Trụ tiềm ẩn * Windows on the Hidden Universe

Michel H.G. Tytgat Université Libre de Bruxelles Belgium

Windows on the Universe, 25th Rencontres du Vietnam, Quy Nhon, August 5-11 2018

thanks to John Hoàng

WHY DARK MATTER?

DARK ENERGY

DARK MATTER

BARYONS

- * WIMP HISTORY IN BRIEF
- * A FIMP FROM A HIDDEN SECTOR
- * ABUNDANCE FROM FREEZE-IN
- * DIRECT DETECTION IS TESTING FREEZE-IN
- * SELF-INTERACTING DARK MATTER

The Four Basic Ways of Creating Dark Matter Through a Portal X. Chu, Th. Hambye & M.T (2012)

Direct detection is testing Freeze-in Th. Hambye, M.T., J. Vandecasteele & L. Vanderheyden (2018)

> Solar Mass Black Holes K. Kouvaris, P. Tinyakov & M.T. (2018)

WIMP HISTORY IN BRIEF

1. SM HAS ISSUES

see Emilian Dudas' talk

2. ABUNDANCE FROM FREEZE-OUT

2. ABUNDANCE FROM FREEZE-OUT

 $m_{\rm DM}/T$

3. EXPERIMENTS

3. EXPERIMENTS

• • •

4. MODELS

4. MORE MODELS

4. EVEN MORE MODELS

4.*\$#@%!! MODELS

5. SO FAR NO SIGN OF A WIMP

6. THE TWILIGHT OF THE WIMPS (?)

DARK MATTER FROM A HIDDEN SECTOR

ALTERNATIVE PERSPECTIVE

A HIDDEN SECTOR (HS)

SM PORTALS TO A HIDDEN SECTOR

Patt & Wilczek (2006)*

PORTAL = Cửa sổ đến với Vũ Trụ tiềm ẩn

* > 500 citations (unpublished)NB: HS is an old story (e.g. SUSY breaking)

SM PORTALS TO A HIDDEN SECTOR

Patt & Wilczek (2006)

SM singlet operators

renormalizable interactions (i.e. dimensionless couplings)

 $\bar{L}\tilde{H}$

 $\Delta \mathcal{L} \supset y \, \bar{L} \tilde{H} N$

Sterile neutrino

Dodelson & Widrow (1994)

 $B_{\mu\nu}$

 $\Delta \mathcal{L} \supset \epsilon \, B_{\mu\nu} X^{\mu\nu}$

Kinetic mixing

Holdom (1986)

 $H^{\dagger}H$

This one is also Lorentz invariant

 $\Delta \mathcal{L} \supset \lambda \, S^2 H^{\dagger} H$

Linked to EWSB?

Higgs portal

. . .

. . .

Silveira & Zee (1985) Veltman & Ynderain (1989)

DARK MATTER THROUGH KINETIC MIXING

 $\mathcal{L} \supset i\bar{\chi} \, D'\chi - m_{\chi} \bar{\chi}\chi - \frac{1}{2} m_{\gamma'}^2 X_{\mu} X^{\mu} + \dots$

Feldman, Kors, Nath '06 Pospelov, Ritz, Voloshin '08 Chu, Hambye, M.T. '12

DARK MATTER THROUGH KINETIC MIXING

hidden charged χ

 $\chi\,$ has gauge interaction in HS $\qquad \qquad \alpha'$

- χ is stable ~ SM electron
- $\chi\,$ suppressed coupling to SM

 $\kappa = \epsilon \sqrt{\alpha'/\alpha}$

4 parameters if dark photon massive

 $m_{\gamma'}$

 m_{χ}

FIMP THROUGH KINETIC MIXING

 κ is naturally tiny !

DM feebly coupled to the SM

Feebly Interacting Massive Particle or FIMP

HS so feebly coupled that it never was in thermal equilibrium

FIMP abundance could have built up from slow particle creation processes

This is called FREEZE-IN

* Mc Donald '02; Hall, Jedamzik & March-Russell '10; Chu, Hambye, M.T. '12

Chu, Hambye, M.T. '12

ABUNDANCE FROM FREEZE-OUT

$DM + DM \longrightarrow SM + SM$ $\Gamma = \sigma v n_{\rm DM}$

ABUNDANCE FROM FREEZE-IN

$SM + SM \longrightarrow DM + DM$

 $\Gamma = \sigma v n_{\rm SM}$

FREEZE-IN vs FREEZE-OUT

4 BASIC WAYS TO CREATE DM THROUGH A PORTAL

Chu, Hambye, M.T. '12

DIRECT DETECTION IS TESTING FREEZE-IN

HOW TO TEST FREEZE-IN ?

DIRECT DETECTION

PRODUCTION THROUGH S-CHANNEL

determines relic abundance

very small cross section

Rutherford (1911)

RUTHERFORD SCATTERING - DIRECT DETECTION

$$\frac{d\sigma}{dE_R} \propto \frac{m_N \kappa^2 \alpha^2 Z^2}{(2m_N E_R + m_{\gamma'}^2)^2}$$

RUTHERFORD SCATTERING - DIRECT DETECTION

v ~ 200 km/s (halo DM)

$$\frac{d\sigma}{dE_R} \propto \frac{m_N \kappa^2 \alpha^2 Z^2}{(2m_N E_R + m_{\gamma'}^2)^2} \sim \frac{1}{E_R^2}$$

Huge enhancement if $m_{\gamma'} \lesssim 40 \text{ MeV}$

DIRECT DETECTION IS TESTING FREEZE IN

n.b.: Not the same spectrum as a WIMP, Must recasti the direct detection constraints

Very first direct detection test of a FI scenario !

Hambye, M.T., Vandecasteele, Vanderheyden '18

DIRECT DETECTION IS TESTING FREEZE IN

n.b.: Not the same spectrum as a WIMP, Must recasti the direct detection constraints

Very first direct detection test of a FI scenario !

Hambye, M.T., Vandecasteele, Vanderheyden '18

SELF-INTERACTING DARK MATTER

Self Interacting Dark Matter

small scale structure issues (core/cusp),...

WHY SELF-INTERACTING DM ?

core or cusp?

to-big-to-fail ?

missing satellites ?

CDM only simulation

WHY SELF-INTERACTING DM ?

There is a **diversity problem** unexplained by CDM + BARYONS simulations (mostly dwarf galaxies)

Oman *et al*, arXiv:1504.01437

WHY SELF-INTERACTING DM ?

SIDM may alleviate the small-scale problems

CORE/CUSP Spergel & Steinhardt (2000),...

too-big-to-fail

diversity

Vogelsberger, Zavala & Loeb (2012),...

Hamada, Kaplinghat, Pace & Yu (2016),...

collisions \longrightarrow thermalized DM \longrightarrow core instead of cusp

$$\frac{\sigma}{m} \sim \frac{\mathrm{cm}^2}{\mathrm{g}} \equiv \frac{\mathrm{barn}}{\mathrm{GeV}}$$

i.e. seemingly hadronic

but more generally light mediator

RUTHERFORD SCATTERING AGAIN

« As big as a barn » for $\, m_{\gamma'} \,$ in MeV range

SELF INTERACTING FIMP

Hambye, M.T., Vandecasteele, Vanderheyden '18

DIRECT DETECTION TESTS SELF-INTERACTING DM

Hambye, M.T., Vandecasteele, Vanderheyden '18

DIRECT DETECTION TESTS SELF-INTERACTING DM

Hambye, M.T., Vandecasteele, Vanderheyden '18

A FIMP AS AN ALTERNATIVE TO A WIMP

NATURAL FRAMEWORK : HIDDEN SECTOR DM

VERY FEEBLE INTERACTIONS

COSMIC ABUNDANCE REACHED THROUGH FREEZE-IN

FOR LIGHT MEDIATOR ~ MeV THIS PARADIGM IS BEING TESTED BY DIRECT DETECTION EXPERIMENTS

BY SAME TOKEN, **SELF-INTERACTING DARK MATTER** (small scale structure issues)

CAVEAT : no clear connection to SM fundamental issues...

SIDM CAN DEVOUR NEUTRON STARS

$v_{\rm DM} \sim 200 \ \rm km/s$

SIDM

Neutron Star (not to the scale)

SIDM CAN DEVOUR NEUTRON STARS

Capture of DM by NS

Goldman & Nussinov (1989) - Kouvaris (2008)

Critical DM-n scattering cross section (neutron star)

$$\sigma_{\rm cr} = 0.45 \, m_n \, R_\star / M_\star \approx 1.3 \times 10^{-45} \, {\rm cm}^2$$

Maximal mass captured (normal DM environment)

$$N_{\rm acc} \approx 10^{39} ({\rm TeV}/m_{\rm dm})$$
$$M_{\rm acc} \sim 10^{-15} M_{\odot}$$

This assumes DM does not annihilate e.g. **asymmetric DM**

SIDM CAN DEVOUR NEUTRON STARS

Assume asymmetric **fermionic** SIDM with **attractive** self-interaction

$$V(r) = -\alpha \frac{e^{-\mu r}}{r}$$

Number of DM to overcome Fermi pressure Number of SIDM to overcome Fermi pressure

$$N_{\rm Ch} \approx \left(\frac{M_{\rm Pl}}{m_{\rm dm}}\right)^3 \implies N_{\rm Ch} \approx \left(\frac{\mu}{m_{\rm dm}\sqrt{\alpha}}\right)^3 \left(\frac{M_{\rm Pl}}{m_{\rm dm}}\right)^3$$

Small for SIDM that alleviates CDM problems!

Kouvaris, Tinyakov & M.T. (2018); see also Bramante, Linden & Tsai (2017)

SIDM THAT WOULD DEVOUR NEUTRON STARS

SIDM candidates that alleviate CDM issues

#	α	μ	m	$N_{ m cr}$	$N_{ m Ch}$	$M_{ m Ch}$
1	10^{-4}	$1 { m MeV}$	$1 { m TeV}$	$3\cdot 10^{33}$	$6 \cdot 10^{35}$	$5\cdot 10^{-19}M_{\odot}$
2	10^{-3}	$10 { m MeV}$	$1 { m TeV}$	$5\cdot 10^{35}$	$2 \cdot 10^{37}$	$2\cdot 10^{-17} M_{\odot}$
3	10^{-3}	$1 { m MeV}$	$200~{\rm GeV}$	$1.3\cdot 10^{34}$	$3\cdot 10^{38}$	$5\cdot 10^{-17}M_{\odot}$
4	10^{-4}	$1 { m MeV}$	$200~{\rm GeV}$	$3.7\cdot 10^{34}$	$8\cdot 10^{39}$	$2\cdot 10^{-15}M_{\odot}$

Kouvaris, Tinyakov & MT (2018)

SOLAR MASS PRIMORDIAL BLACK HOLES ?

SOLAR MASS BLACK HOLES ?

Detectors	BNS range (Mpc)	BNS detections (per year)
LIGO/Virgo	105/80	4 - 80 (2020 +)
KAGRA	100	11 - 180 (2024 +)
ET	$\sim 5 \cdot 10^3 \ (z \approx 2)$	$O(10^3 - 10^7)$

A FIMP AS AN ALTERNATIVE TO A WIMP

NATURAL FRAMEWORK : HIDDEN SECTOR DM

VERY FEEBLE INTERACTIONS

COSMIC ABUNDANCE REACHED THROUGH FREEZE-IN

FOR LIGHT MEDIATOR ~ MeV THIS PARADIGM IS BEING TESTED BY DIRECT DETECTION EXPERIMENTS

BY SAME TOKEN, **SELF-INTERACTING DARK MATTER** (small scale structure issues)

POTENTIALLY DRAMATIC CONSEQUENCES OF SIDM

CAN DESTROY NS INTO SOLAR MASS SCALE BLACK HOLES

I REVIEWED **FIMP** AS AN ALTERNATIVE TO A WIMP

A HIDDEN SECTOR PROVIDES A NATURAL FRAMEWORK FOR A FIMP

IT IS A DM CANDIDATE WITH VERY FEEBLE INTERACTION

COSMIC ABUNDANCE CAN BE REACHED THROUGH FREEZE-IN

WHILE SEEMINGLY DIFFICULT TO TEST, **XENON1T** CURRENT DATA ARE ALREAD **TESTING** SUCH SCENARIO, FOR **LIGHT MEDIATOR ~ MeV**

A LIGHT MEDIATOR LEADS TO STRONG SELF-INTERACTIONS IN THE RANGE REQUIRED TO ALLEVIATE SMALL SCALE ISSUES OF CDM