

Top quark properties and rare processes from ATLAS, CMS, LHCb

Tae Jeong Kim (Hanyang University) on behalf of the ATLAS, CMS, LHCb collaborations

For ICISE2018: 25th Recontres du Vietnam Windows on the Universe 10 Aug 2018 at Quy Nhon, Vietnam

2018-08-10

Tae Jeong Kim (HYU)

Outline

- Introduction
- Top quarks everywhere
 - Top quark cross section and mass
- Spin correlation
- FCNC
 - tu(c)H
 - tu(c)Z
- Conclusion

Introduction

- Top quark is the heaviest particle in the SM with $y_t \sim 1$
- It is believed to be the window on new physics
- We are collecting more data than ever
 - More than 100 fb⁻¹ in total at 13 TeV since 2015
- No hints from bump hunting or other model dependent new physics searches
- To find hints of new physics, precision measurements and rare processes becomes more and more important
 - Reduce theoretical uncertainties for experimentally non-accessible area

CMS Integrated Luminosity, pp

Top quarks everywhere

Top quark cross section and mass

• Top quark cross section not only for constraining theoretical uncertainty but also for extracting SM parameters

- 4% uncertainty from modeling and luminosity
- See the talk from Aran Garcia-Bellido on Tuesday

• Top quark mass is a key parameter in SM

ATLAS+CMS Preliminary LHC <i>top</i> WG	m_{top} summary, $\sqrt{s} = 7-13 \text{ TeV}$	September 2017			
World Comb. Mar 2014, [7] stat	total stat				
total uncertainty	$m_{top} \pm total (stat \pm syst)$	s Ref.			
ATLAS, I+jets (*)	172.31± 1.55 (0.75 ± 1.35)	7 TeV [1]			
ATLAS, dilepton (*)	$173.09 \pm 1.63 \; (0.64 \pm 1.50)$	7 TeV [2]			
CMS, I+jets	$173.49 \pm 1.06 \; (0.43 \pm 0.97)$	7 TeV [3]			
CMS, dilepton	$172.50 \pm 1.52 \; (0.43 \pm 1.46)$	7 TeV [4]			
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [5]			
LHC comb. (Sep 2013) LHC top WG	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [6]			
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [7]			
ATLAS, I+jets	$172.33 \pm 1.27 \; (0.75 \pm 1.02)$	7 TeV [8]			
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [8]			
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [9]			
ATLAS, single top	$172.2\pm2.1~(0.7\pm2.0)$	8 TeV [10]			
ATLAS, dilepton	$172.99 \pm 0.85 \; (0.41 \pm 0.74)$	8 TeV [11]			
ATLAS, all jets	$173.72 \pm 1.15 \; (0.55 \pm 1.01)$	8 TeV [12]			
ATLAS, I+jets	$172.08 \pm 0.91 \; (0.38 \pm 0.82)$	8 TeV [13]			
ATLAS comb. (Sep 2017) HTH	172.51 \pm 0.50 (0.27 \pm 0.42)	7+8 TeV [13]			
CMS, I+jets	$172.35 \pm 0.51 \; (0.16 \pm 0.48)$	8 TeV [14]			
CMS, dilepton	$172.82 \pm 1.23 \; (0.19 \pm 1.22)$	8 TeV [14]			
CMS, all jets	$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [14]			
CMS, single top	$172.95 \pm 1.22 \; (0.77 \pm 0.95)$	8 TeV [15]			
CMS comb. (Sep 2015)	172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [14]			
CMS, I+jets	$\begin{array}{c} 172.25 \pm 0.63 \; (0.08 \pm 0.62) \\ (1.45c \text{CONF-2015047} \\ \text{ATLAS-CONF-2015047} \\ \text{ATLAS-CONF-2015047} \\ \text{AUEP 12 (2012) 103} \\ AUEP 12 (20$	13 TeV [16] [13] ATLAS-COMF-2017-071 [14] Phys.Rev.D93 (2016) 072004 [15] EPJ42 77 (2017) 354 [16] CMS-PAS-TOP-17-007			
165 170 1	75 180	185			
m _{top} [GeV]					

- 0.3% mainly from JEC (flavor)
- I3 TeV results in all jet channel (CMS-PAS-TOP-17-008) :

172.34 \pm 0.20 (stat+JSF) \pm 0.76 (syst) GeV

Spin correlations

- Top quark decays before hadronization
 - Preserve the spin information
- Top quarks are produced un-polarized at the LHC
- However, new physics (NP) can introduce polarization
 - NP causing forward-backward asymmetry
- Correlation between top and anti-top spin can be extracted
- Leptons from W in top decay carries almost the full spin information
- The simplest variable is $\Delta \phi$ between two leptons in dilepton (eµ)

ATLAS-CONF-2018-027

Spin correlations (ATLAS)

- Signal modeling is dominant uncertainty
- Jet energy and pileup uncertainties are also significant

Spin correlations (ATLAS)

ATLAS-CONF-2018-027

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

 $n_i = f_{\rm SM} \cdot n_{\rm spin} + (1 - f_{\rm SM}) \cdot n_{\rm nospin}$

- f_{SM} as a function of m_{ttbar} is found to increases
 - Uncertainty becomes larger than inclusive one
 - Spin correlation (f_{SM} value) is larger than the SM prediction by 3.7 σ
 - Including theoretical uncertainty by 3.2 σ
 - The largest systematic uncertainty is from ttbar modeling

Region	$f_{ m SM}$	Significance (incl. theory uncertainties)
$m_{t\bar{t}} < 450 { m ~GeV}$	$1.11 \pm 0.04 \pm 0.13$	0.85~(0.84)
$450 < m_{t\bar{t}} < 550~{\rm GeV}$	$1.17 \pm 0.09 \pm 0.14$	$1.00 \ (0.91)$
$550 < m_{t\bar{t}} < 800 { m GeV}$	$1.60 \pm 0.24 \pm 0.35$	$1.43\ (1.37\)$
$m_{t\bar{t}} > 800~{\rm GeV}$	$2.2\pm1.8\pm2.3$	0.41 (0.40)
inclusive	$1.250 \pm 0.026 \pm 0.063$	3.70(3.20)

FCNC

- Top quark decays before hadronization.
 - almost 100% decays to b-quark and W boson in the SM.
- Decay to lighter down-type quarks (d or s) are allowed but suppressed due to CKM matrix.
- Flavor changing neutral currents (FCNC)
 - Transitions that change the flavor of a fermion without changing its charge.
 - FCNC is suppressed by GIM mechanism (can occur only at quantum loop corrections) → In the SM, the Br is < 10⁻¹²
- FCNCs are enhanced in many beyond the SM.
- Any small deviation would indicate new physics.
- Top rare decay should be sensitive to new physics already.
- Model independent searches using effective Lagrangian were pursued.

- First time to present the result of the analysis of the single top mode
- Two steps of BDT (Boosted Decision Tree) approaches
 - Assigning b jets to either top or Higgs: 75% correct assignment
 - Then, classification between signal and background
- Single lepton events + requiring 2/3/(4) b jets for Hut(Hct) coupling
- Categorize the events based on number of jets and b jets

• Input variables for classification (3 jets and 3 b jets case)

• BDT output (3 b jets and 4 jets case)

JHEP 06(2018) 102 (arxiv: 1712.02399)

- Upper limit : observed (expected)
 - Br(t→Hu) < 0.47 (0.34)%
 - Br(t→Hc) < 0.47 (0.44)%

- At least two isolated photon
 - $p_T^{1st} > 40 \text{ GeV} \text{ and } p_T^{2nd} > 30 \text{ GeV}$
- At least 4 jets ($p_T > 30$ GeV) and select 4 leading ones
- At least one b-tagged jet
- Hadronic channel
 - Top I (FCNC) : I52 < M₁(γγj) < I90 GeV
 - Top2 (Wb) : I20 < M₂(jjj) < 220 GeV
 - Category I : Pass MI and M2 requirements, Category 2 : Pass MI but M2

JHEP 10(2017) 129 (arxiv: 1707.01404)

Leptonic channel

- Exclusively one lepton required ($p_T > 15 \text{ GeV}/10 \text{ GeV}$ for e/μ)
- At least 2 jets ($p_T > 30$ GeV) and select 2 leading jets
- $m_T^W > 30$ GeV to reject background mainly from $\gamma \gamma j$ events
- Top mass window
 - Top I (FCNC) : I52 < M₁(γγj) < I90 GeV,
 - Top2 (Wb) : $I30 < M_2(ljv) < 210 \text{ GeV}$

- Signal distribution is described by a double-sided Crystal Ball function from the 0 simulated FCNC signal and background by non-resonant diphoton mass distribution from $\gamma \gamma j$ sample (hadronic)
- Likelihood as a Poisson term for two bins (SR and CR) (leptonic) 0
- Systematic uncertainties : Signal MC generators, ISR/FSR/Hadronization, theory 0
- Upper limit : Br(t \rightarrow cH) < 0.22 (0.16)%, Br(t \rightarrow uH) < 0.24 (0.17)% 0

$t \rightarrow qH \rightarrow q+multi-lepton + X (ATLAS)$ arxiv: 1805.03483

- Signal signature : $t \rightarrow qH \rightarrow q(WW^* / \tau\tau / ZZ^*)$
 - no hadronic tau decay
- Backgrounds : QCD and ttW
- Two same-sign leptons
 - Leptons with p_T > 20 GeV
 - At least 4 jets with p_T > 30 GeV, at least one b-tagged jet
- 3 leptons
 - |M(l⁺l⁻ or 3l) 91.2| > 10 GeV
 - At least 4 jets, one of them is b-tagged
- BDT is used for signal and background separation

 $m(\ell_0, \ell_1)$ [GeV]

- Observed (expected) upper limit of $t \rightarrow cH$ is 0.16 (0.15)%
- Observed (expected) upper limit of $t \rightarrow uH$ is 0.19 (0.15)%
- The most stringent channel in ATLAS
- Dominant systematic uncertainties
 - signal MC generation, non-prompt background estimation

CMS-PAS-TOP-17-017

$t \rightarrow qZ \rightarrow qII(CMS)$

- Two event signal regions
- Single top production with I jet requirement
- Top quark decay in a top quark pair production with 2-3 jets requirement

• Use BDT to separate FCNC signal from the backgrounds

- Observed (expected) limits on branching ratios
 - Br(t→Zu) < 0.024 (0.015)%
 - Br(t→Zc) < 0.045 (0.037)%

$t \rightarrow qZ \rightarrow qII (ATLAS)$

- arxiv: 1803.09923
- Event selection to remove backgrounds from ttZ,WZ, ZZ and QCD
 - Three isolated charged leptons
 - At least two jets with $p_T > 25$ GeV, at least one b-tagged jet
 - MET > 20 GeV

- Systematic uncertainties : theory normalization, background modeling
- To constrain uncertainties, five 0 control regions are defined
- Observed (expected) upper 0 limit
 - $Br(t \rightarrow Zc) < 0.024 \ (0.032)\%$
 - Br(t→Zu) < 0.017 (0.024)%

0

Summary of the current limits

• Start to touch the BSM predictions with the highest branching ratio

Summary of the current limits

• Survival region (white box) is getting narrower

Tae Jeong Kim (HYU)

Conclusions

- LHC was indeed a top quark factory.
 - Top quarks are observed even from LHCb and pPb collisions at CMS and studied extensively
- Top quark properties are measured with high precision
- ATLAS and CMS have performed the rare top decay searches
- Rare processes in top quark sector beyond SM are now within reach
- Exciting time is ahead of us with more data in 2018.
- More results will be coming soon

1.5 Normalised cross-section ATLAS Preliminary m_{rf} < 450 GeV 1.4 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 1.3 1.2 1.1 0.9 0.8 0.7 0.6 50 0. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π] Normalised cross-section 1.8 ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ 1.6 1.4 1.2 0.8 Powheg Powheg (C = 0)Data 0.6 Fit result 0.4^L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

2018-08-10

Spin correlations (ATLAS)

Parton level $\Delta \phi(l^+, \bar{l})/\pi$ [rad/ π]

- f_{SM} as a function of m_{ttbar} is found to increases
- Uncertainty becomes larger than inclusive one

ATLAS-CONF-2018-027

$\Delta \phi(t, \bar{t})$ (CMS)

JHEP 04 (2018) 060

• Differential cross section as a function of $\Delta \phi(t, \bar{t})$

26

 $t \rightarrow qZ \rightarrow qII (CMS)$

• Set limits on trilinear top-quark-boson couplings

$$\mathcal{L}_{\text{FCNC}}^{tZq} = \sum_{q=u,c} \left[\frac{\sqrt{2}}{4} \frac{g}{\cos \theta_{W}} \frac{\kappa_{tZq}}{\Lambda} \bar{t} \sigma^{\mu\nu} \left(f_{Zq}^{L} P_{L} + f_{Zq}^{R} P_{R} \right) q Z_{\mu\nu} \right] + h.c.$$

$T \rightarrow qZ \rightarrow qII (ATLAS)$

Selection	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt lepton CR0 (CR1)	SR
No. leptons	3	3	4	3	3
OSSF	Yes	Yes	Yes	Yes	Yes
$ m_{\ell\ell}^{ m reco} - 91.2 { m ~GeV} $	$< 15 { m ~GeV}$	$< 15 { m ~GeV}$	$< 15 { m ~GeV}$	$> 15 { m ~GeV}$	$< 15 { m ~GeV}$
No. jets	≥ 4	≥ 2	≥ 1	≥ 2	≥ 2
No. <i>b</i> -tagged jets	2	0	0	0(1)	1
$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 20 { m GeV}$	$> 40 { m GeV}$	$> 20 { m GeV}$	$> 20 { m GeV}$	$> 20 { m GeV}$
$m_{ m T}^{ar{\ell} u}$	_	$> 50 { m GeV}$	_	_	-
$ m_{\ell\nu}^{ m reco} - 80.4 ~{ m GeV} $	-	-	-	-	$< 30 { m ~GeV}$
$ m_{j\ell\nu}^{ m reco} - 172.5 ~{ m GeV} $	-	-	-	-	$< 40 { m ~GeV}$
$ m_{j\ell\ell}^{ m reco} - 172.5 ~{ m GeV} $	-	-	_	-	$< 40 { m ~GeV}$

Sample	$t\bar{t}Z$ CR	$WZ \ CR$	$ZZ \ CR$	Non-prompt	Non-prompt
				lepton CR0	lepton CR1
$t\bar{t}Z$	61 ± 6	16.5 ± 3.1	0 ± 0	6.1 ± 1.2	21.9 ± 2.9
WZ	6 ± 4	610 ± 40	0 ± 0	166 ± 13	20 ± 5
ZZ	0.07 ± 0.02	49 ± 9	89 ± 12	59 ± 10	9.0 ± 2.2
Non-prompt leptons	2.0 ± 2.3	41 ± 15	0 ± 0	177 ± 32	174 ± 21
Other backgrounds	13.4 ± 2.6	23 ± 5	1.1 ± 0.6	19 ± 6	33 ± 7
Total background	82 ± 7	737 ± 35	90 ± 12	426 ± 30	258 ± 20
Data	81	734	87	433	260
Data / Bkg	0.99 ± 0.14	1.00 ± 0.06	0.97 ± 0.16	1.02 ± 0.09	1.01 ± 0.10