Rencontres du Vietnam-2018 Windows on the Universe

A fine-tuned interpretation of the charged lepton mass hierarchy in a microscopic cosmological model

Vo Van Thuan

<u>Duy</u> Tan University (DTU) 3 <u>Quang Trung</u> street, <u>Hai Chau</u> district, <u>Danang</u>, Vietnam

Vietnam Atomic Energy Institute (VINATOM-Hanoi) Email: vvthuan@vinatom.gov.vn

ICISE-Quy Nhon, Vietnam, August 05-11, 2018

Contents

- 1. Time-Space Symmetry: Motivation–Cylindrical Geometry
- 2. Dual solutions of the gravitational equation for a microscopic cosmology
- 3. Charged lepton mass hierarchy in the first order approximation
- 4. The second approximation of tauon mass by minor curvatures
- 5. The third approximation by perturbative fine-tuning minor curvatures
- 6. Discussion

1- Time-Space Symmetry (1): Problem

Problems: The origin of the Mass Hierarchy of elementary termions?

Fermion masses are induced in interaction of genetic particles with Higgs field. All Yukawa couplings are determined independently.

 \rightarrow Interpretation of mass hierarchy within the Standard Model (SM) or even in moderate extension of SM are mostly phenomenological with qualitative predictions (e.g. models with flavor democracy, quark-lepton correspondences etc.).

1/ Quark mass hierarchy is parametrized by CKM mixing matrices being in consistency with QCD within SM;

2/ Neutrino mass hierarchy and their masses are parametrized by MNSP mixing matrices, being solved by extension of SM or by Beyond SM approaches;

3/ Mass hierarchy of charged leptons is as large as of both up-type and down-type quarks. Probably, this is a Beyond SM problem !

→ Exception: an excellent prediction by the Koide empirical formula, the origin of which is interpreted by Sumino in correlation with vacuum expectations of heavier family gauge bosons at 10E2-10E3 TeV.

1- Time-Space Symmetry (2): Motivation

- Objectives: To solve the mass hierarchy problem of charged leptons and to predict tauon mass with high accuracy.
- Motivations of the present research: Looking for an alternative Beyond SM \equiv Higher-dimensional space-time approach.
- 1/ Searching for a link between: GR and QM,

To formulate a "microscopic" cosmological model (MicroCoM) to describe masses and mass hierarchy of leptons.

2/ Searching for a link between:

- The number of dimensions = The number of lepton generations.
- \rightarrow To add time-like EDs up to 3D-time: Time-Space Symmetry={3T-3X}:
- → 3 orders of time-like curvatures induce masses of 03 charged leptons (electron, muon, tauon).

To predict the mass ratios and to calculate the absolute masses of charged leptons.

1- Time-Space Symmetry (3): References

- Phenomenological interpretations within SM or by moderate extension of SM. See, e.g. reviews:
- [1] H. Fritzsch and Z.Z.Xing, Phys.Rev.D61(2000)073016.
- [2] W.G.Hollik, U.J.S.Salazar, Nucl.Phys.B892(2015)364.
- Koide empirical formula (an excellent prediction of tauon mass):
- [3] Y.Koide, Phys.Lett.B 120(1983)161.
- [4] Y. Sumino, Phys.Lett.B671(2009)477 (Effective field theory interpretation of Koide formula by family gauge symmetry U(3) broken at $10^3 10^3$ TeV).
- Beyond SM- an alternative: ED geometrical dynamics Modern Kaluza-Klein Theories: 5D Space-Time-Matter (STM) theory is applied for QM:
- [5] P.S. Wesson, Phys.Lett.B 701(2011)379; Phys.Lett.B 706(2011)1;
- [6] Phys.Lett.B 722(2013)1; IJMPD 24(2015)1530001.
- Following induced matter approach we proposed a semiphenomenological model with {3T-3X} Time-Space Symmetry (TSS):

Bi-cylindrical GR Equation \rightarrow Formulation of the Microscopic Cosmology in 3T sub-space \rightarrow Charged lepton mass hierarchy \rightarrow Tauon Mass:

- [7] Thuan Vo Van, Foundations of Physics 47(2017)1559.
- [8] Vo Van Thuan, arXiv:1711.08346 [physics.gen-ph] to be published.

1- Time-Space Symmetry (4)- Cylindrical Geometry

□ In an ideal **6D** flat time-space $\{t_1, t_2, t_3 | x_1, x_2, x_3\}$ considering orthonormal sub-spaces 3D-time and 3D-space:

$$dS^2 = dt_k^2 - dx_l^2$$
; summation: $k, l = 1 \div 3$. (1.1)

Our physics works on its symmetrical "light-cone":

$$d\vec{k}^2 = d\vec{l}^2$$
 or $dt_k^2 = dx_l^2$; summation: $k, l = 1 \div 3$ (1.2)

Natural units ($\hbar = c = 1$) used unless it needs an explicit quantum dimension.

 \rightarrow It is equivalent to a 6D-vacuum with: dS=0.

Introducing a 6D isotropic plane wave equation:

$$\frac{\partial^2 \psi_0}{\partial t_k^2} = \frac{\partial^2 \psi_0}{\partial x_l^2} \quad ; \tag{1.3}$$

Where $\psi_0(t_k, x_l)$ is a harmonic correlation of dt and dx, containing only linear variables $\{t_k, x_l\}$, serving a primitive source of quantum fluctuations in space-time. All chaos of displacements dt and dx can form averaged timelike and space-like global potentials V_T and V_X .

1- Time-Space Symmetry (5)- Bi-Cylindrical Geometry

□ Suggesting that the global potentials, originally, accelerating linear spacetime into curved time-space which describes 3D spinning $\vec{\tau}$ and \vec{s} in symmetrical orthonormal subspaces of 3D-time and 3D-space.

□ For a kinetic state (curved rotation + linear translation): { $t_{3,}x_{3}$ } are accepted as longitudinal central axes of a symmetrical bi-cylindrical geometry ($\psi, \varphi, t_k | \psi, \varphi, x_l$);

The curved coordinates for 3D-space: $\{x_j\} \equiv \{x_1, x_2, z\}$ with $dz^2 = dx_n^2 + dx_3^2$; Similarly, for 3D-time there are $\{t_i\} \equiv \{t_1, t_2, t\}$ with $dt^2 = dt_0^2 + dt_3^2$.

 \rightarrow t₀ and x_n are local affine parameters in 3D-time and 3D-space, respectively.

EDs turn into dynamical functions of other space-time dimensions:

 $\psi = \psi(t_0, t_3, x_n, x_l)$ and $\varphi = \Omega t - k_l x_l = \Omega_0 t_0 + \Omega_3 t_3 - k_n x_n - k_l x_l$; (1.4)

Here $\psi = \psi(T).\psi(X)$ is variable-separable and φ is linear dependent. \rightarrow Possible to express them in a bi-cylindrical geometry.

1- Time-Space Symmetry (6): Bi-Cylindrical Metrics

□ In observation of an individual lepton (τ_n , $s_n = \pm 1/2$), due to interaction of a Higgs-like potential V_T the time-space symmetry being spontaneously broken for forming energy-momentum ($ds_0 > d\sigma_{spin} > d\sigma_{PNC} > ds_{CPV}$) leads to an Asymmetrical Bi-cylindrical Geometry:

$$d\Sigma_{A}^{2} \equiv dS^{2} + d\sigma^{2} = (ds_{0}^{2} + ds_{CPV}^{2}) - (d\sigma_{spin}^{2} + d\sigma_{PNC}^{2}) = dt^{2} - dz^{2} = dt^{2}$$

 $= [d\psi(t_0, t_3)^2 + \psi(t_0, t_3)^2 d\varphi(t_0, t_3)^2 + dt_3^2] - [d\psi(x_n, x_3)^2 + \psi(x_n, x_3)^2 d\varphi(x_n, x_3)^2 + dx_3^2].$ (1.5) $\Box \text{ The Asymmetrical Geometry (5) for charged leptons :}$

$$dS_e^2 \approx ds_0^2 - d\sigma_{Spin}^2 = dt^2 - dz^2 \equiv dt^2 - dx_j^2;$$
 (1.6)

→ It resembles the special relativity (SR), however, here coordinates {t,z} are curved.

Fig.1.1. Asymmetrical bi-cylindrical geometry:

-Time-like curvature ds_0 : odd term, being strong and almost absolute;

-Space-like curvature $d\sigma_{spin}$: even term being not absolute (quasi-curvature)

1- Time-Space Symmetry (7): Breaking Symmetry Phenomenological assumptions

dS and $d\sigma$ are time-like and space-like intervals introduced for compensating the curvatures to maintain a conservation of linear translation (CLT) in a relation to (1) and (2). From a semi-phenomenological view:

$$dS^{2} = ds_{odd}^{2} - ds_{even}^{2} = ds_{0}^{2} - ds_{CPV}^{2}$$

$$d\sigma^{2} = d\sigma_{odd}^{2} - d\sigma_{even}^{2} = d\sigma_{PNC}^{2} - d\sigma_{Spin}^{2}.$$

Table 1. Semi-phenomenological based Data for curved geometries of leptons:

Dynamics source	Higgs-like potential	Weak interaction	CPV potential	Spatial spinning	
Corresponding Interval	ds _{odd}	$d\sigma_{odd}$	ds _{even}	$d\sigma_{even}$	
For heavy leptons (e, μ, τ)	Major	Weak	Super weak	Minor	
Corresponding	$h_{ au}$	h _s	τ (time-like)	S (space-like)	
Rotational character	Iso-Helicity	Helicity	Pseudo-spin	Spin	
The Asymmetrical Geometry (5) for charged leptons : $dS_e^2 \approx ds_0^2 - d\sigma_{Spin}^2 = dt^2 - dz^2 \equiv dt^2 - dx_j^2$; (1.6) It resembles the special relativity, however, here coordinates {t,z} are curved.					

2- A duality of higher-dimensional gravitational equation (1)

Applying Geometry (1.6) with signatures {- - +++} of bi-cylindrical curvatures, the gravitational equation in vacuum (T^m_i=0) reads:

 $R_i^m - \frac{1}{2} \delta_i^m R = 0; \qquad (2.1)$

□ In an apparent vacuum $\Lambda = 0$, Eq. (2.1) leads to {3T,3X}-Ricci vacuum equation: $R^{\beta}_{\alpha}(T) + R^{\sigma}_{\gamma}(X) = 0.$ (2.2)

Where Ricci tensors with $\alpha, \beta \in 3D$ -time = 3T and ones with $\gamma, \sigma \in 3D$ -space = 3X.

Recalling $\psi = \psi(y)$ and $\varphi = \varphi(y)$ are functional, where: $y \equiv \{t, z\} \in \{t, x_j\} \equiv \{t_0, t_3, x_n, x_l\} \in \{t_i, x_j\}$; $y_3 \equiv \{t_3, x_3\}$ being implicitly embedded in 3D-time: $t_3 \in \{t_k\}$ and in 3D-space: $x_3 \in \{x_l\}$, respectively.

→ Prior assuming the Hubble law of the cosmological expansion is applied to the Bi-Cylindrical Geometry (1.6) of microscopic space-time:

$$\frac{\partial \psi}{\partial y} = v_y = H_y \psi$$
 and therefore $\left| \frac{\partial y}{\partial \psi} \right| = \frac{1}{H_y \psi}$; (2.3)

Where H_y is the "micro-Hubble constant", then the expansion rate v_y increases proportional to the "micro-scale factor" ψ ;

2- A duality of higher-dimensional gravitational equation (2)

GR equation (2.2) with only diagonal terms leads to two independent subequations: $R_3^3(T) + R_3^3(X) = 0; \quad (2.4)$ $R_{\psi}^{\psi}(T) + R_{\psi}^{\psi}(X) = 0; \quad (2.5)$

□ Sub-equation (2.4) defines conservation of linear translation (CLT) of Eq. (1.3): $-\frac{\partial^2 \psi}{\partial t_3^2} + \frac{\partial^2 \psi}{\partial x_3^2} = 0.$ (2.6)

which leads to a Lorentz-like condition for compensating longitudinal fluctuations: $(\omega_3^2 - k_3^2)\psi = 0.$ (2.7)

The sub-equation (2.5): in a time-space symmetrical representation, accounting Lorentz-like condition (2.7) reads:

$$\frac{\partial^2 \psi}{\partial t^2} - \left(\frac{\partial \varphi}{\partial t_0}\right)^2 \psi = \frac{\partial^2 \psi}{\partial x_j^2} - \left(\frac{\partial \varphi}{\partial x_n}\right)^2 \psi, \quad (2.8)$$

Where $y = \{t_i, x_j\}$ as for summation of time-like and space-like variables; due to the 3D-local orthogonality: $\frac{\partial^2 \Psi}{\partial t^2} = \frac{\partial^2 \Psi}{\partial t_0^2} + \frac{\partial^2 \Psi}{\partial t_3^2}$ and $\frac{\partial^2 \Psi}{\partial x_i^2} = \frac{\partial^2 \Psi}{\partial x_n^2} + \frac{\partial^2 \Psi}{\partial x_l^2}$. (2.9)

2- A duality of higher-dimensional gravitational equation (3)

□ For a homogeneity condition \rightarrow Eq.(2.8) is getting a symmetrical equation of bigeodesic acceleration of deviation ψ :

$$\frac{\partial^2 \psi}{\partial t_0^2} - \left(\frac{\partial \varphi}{\partial t_0}\right)^2 \psi = \frac{\partial^2 \psi}{\partial x_n^2} - \left(\frac{\partial \varphi}{\partial x_n}\right)^2 \psi . \quad (2.10)$$

Due to **3D** local geodesic conditions in 3D-time and in 3D-space, both sides in (2.10) are getting independent:

Then it leads to de Sitter-like exponential sub-solutions being able to describe Hubble-like expansion in microscopic 3D-time or 3D-space, correspondingly.

Those conditions will be applied in a so-called "microscopic" cosmological model (MicroCoM) for lepton mass hierarchy.

→ The separated geodesic conditions in 3D sub-spaces ensure that due to a symmetry-breaking, their scales are able to renormalized independently without violation of an invariant formalism. In a result → Non-zero mass terms appeared.

2- A duality of higher-dimensional gravitational equation (4)

□ Recall that Geometry (1.6) is formulated due to a Higgs-like potential, producing time-like polarization $V_T P \Rightarrow P^+$ and a week space-like PNC:

$$(V_T \boldsymbol{P})^2 = \left[V_T \left(\frac{\partial \varphi}{\partial t_0^-} + \frac{\partial \varphi}{\partial t_0^+} \right) \right]^2 \psi \equiv [\boldsymbol{f}_e(\boldsymbol{\chi} + \boldsymbol{\phi}_0)]^2 \psi \Rightarrow (P^+)^2 = \left(\frac{\partial \varphi}{\partial t_0^+} \right)^2 \psi \equiv (\boldsymbol{f}_e \boldsymbol{\phi}_0)^2 \psi = m_0^2 \psi ; \quad (2.12)$$

where χ is Higgs field and ϕ_0 is Higgs vacuum; f_e is Higgs-electron interaction coupling.

- → Transformation from 6D time-space to 4D space-time is performed.
- \rightarrow Then Geodesics (2.8) turns to a formal 4D Asymmetrical equation:

$$\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x_J^2} = \left[\Lambda_T - \left(\frac{\partial \varphi}{\partial x_n} \right)_{even}^2 - \Lambda_L \right] \psi; \qquad (2.13)$$

where : Effective strong potentials V_T of a time-like "cosmological constant" Λ_T with a residue of P-odd component Λ_L fulfilled breaking symmetry: $[\Lambda_T - \Lambda_L] \psi \equiv \left[\left(\frac{\partial \varphi}{\partial t_0^+} \right)^2 - \left(\frac{\partial \varphi}{\partial x_n^L} \right)^2 \right] \psi$.

A transformation to imaginary variables $y \rightarrow i. y$ leads (2.8) to a wave-like solution. Accordingly, with Lorentz-like condition (2.7), the wave-like solution reads:

$$-\frac{\partial^2 \psi}{\partial t^2} + \frac{\partial^2 \psi}{\partial x_j^2} = \left[\left(\frac{\partial \varphi}{\partial t_0^+} \right)^2 - B_e(k_n, \mu_e)_{even}^2 - \left(\frac{\partial \varphi}{\partial x_n^L} \right)^2 \right] \psi; \quad (2.14)$$

where B_e is a calibration factor and μ_e is magnetic dipole moment of electron; its orientation is in correlation with spin vector \vec{s} and being P-even.

2- A duality of higher-dimensional gravitational equation (5)

■ Re-scaling (2.14) with Planck constant and Compton length, then adopting the quantum operators, as a rule for transformation from the superluminal phase frame to the subluminal realistic frame: $\frac{\partial}{\partial t} \rightarrow i.\hbar \frac{\partial}{\partial t} = \hat{E}$ and $\frac{\partial}{\partial x_j} \rightarrow -i.\hbar \frac{\partial}{\partial x_j} = \hat{p}_j \rightarrow$ Equation (2.14) leads to a generalized KGF equation with a wave-like $\psi \equiv \psi_w$:

$$-\hbar^2 \frac{\partial^2 \psi}{\partial t^2} + \hbar^2 \frac{\partial^2 \psi}{\partial x_i^2} - m^2 \psi = 0 \quad ; \qquad (2.15)$$

Or in momentum representation $(\psi \rightarrow \psi \equiv \psi_p)$: $(E^2 - p_j^2) \psi_p = m^2 \psi_p$; (2.16) where : $m^2 = m_0^2 - \delta m^2 = m_0^2 - m_S^2 - m_L^2$

 \blacktriangleright $m_0 = \hbar \Omega_0$ is the conventional rest mass, defined by Λ_T ; m_S as a P-even contribution links with an external rotational curvature in 3D-space; $m_L \ll m_S$ is a tiny mass factor generated by Λ_L , related to a P-odd effect of parity non-conservation (PNC).

□ For depolarized fields, applying (2.11) and ignoring Λ_L , i.e. $m \to m_0$, and $x_j \to x_l$, Equation (2.15) is identical to the traditional KGF equation (for spin-zero particles):

$$-\hbar^2 \frac{\partial^2 \psi}{\partial t^2} + \hbar^2 \frac{\partial^2 \psi}{\partial x_I^2} - m_0^2 \psi = 0 \quad ; \qquad (2.17)$$

→ Generalized KGF Equation (2.15) serves as a QM motion equation of spinning particle, in particular, as the squared Dirac equation of electron.

→ The curved geometry (1.5) is more general → embedding the flat 4D Minkowski space-time for accommodation of the SM of Quantum Field theories.

2- A duality of higher-dimensional gravitational equation (6)

Interpretation of QM in 4D space-time proves that the extended space-time can serve for accommodation of QM as well as SM of elementary particles.

In a duality to solution of Gravitational General Relativity Equation the 3Dtime-like local geodesic solution (2.11-T):

$$\frac{\partial^2 \psi}{\partial t_0^2} - \left(\frac{\partial \varphi}{\partial t_0}\right)^2 \psi = \frac{\partial^2 \psi}{\partial t_0^2} - \Lambda_T \psi = 0. \quad (2.11-T)$$

→ in a homogeneity and isotropic condition leads to Hubble-like expansion in the microscopic time-space and formulates a Microscopic Cosmological Model (MicroCoM), in analogue to the standard model (SM) of macroscopic cosmology.

In MicroCold the curvatures from 1D to 3D are formulated in a timelike micro-volume which are evolving toward the future along a linearly imitated longitudinal time axis *dt*.

 \rightarrow The proposed MicroCoM is able to solve the mass hierarchy problem of elementary particles, in particular, of charged leptons by linking the time-like curvatures with proper masses.

3- Microscopic cosmological model (MicroCoM) for lepton hierarchy (1)

- □ In 4D space-time assuming that all leptons, as a material points, are to involve in a common basic time-like cylindrical geodesic evolution with a internal 1D circular curvature of the time-like circle $S_1(\varphi^+)$, where φ^+ is azimuth rotation in the plane $\{t_1, t_2\}$ about t_3 and its sign "+" means a fixed time-like polarization from the past to the future;
- Developing more generalized 3D spherical system, described by nautical angles $\{\varphi^+, \theta_T, \gamma_T\}$, where θ_T is a zenith in the plane $\{t_1, t_3\}$ and γ_T is another zenith in the orthogonal plane $\{t_2, t_3\}$.

Fig 3.1. Nautical angles to a time-like cylinder.

3- MicroCoM for lepton hierarchy (2)

□ For a *n*-hyper spherical surface: its intrinsic curvature C_n is a product of all its principle sectional curvatures (n extrinsic S_1):

$$C_n = C_1 \cdot C_{n-1} = \psi^{-1} \cdot C_{n-1} = \psi^{-n}$$
; $n = 1,3$; (3.1)

 \rightarrow In according to general relativity, the energy density ρ_n correlates with its curvature and the density ρ_1 of lightest lepton as:

$$\rho_n = \frac{\epsilon_0}{\psi^n} = \frac{\epsilon_0}{\psi} \frac{1}{\psi^{n-1}} = \rho_1 \frac{1}{\psi^{n-1}} ; \quad (3.2)$$

Where the factor ϵ_0 is assumed a universal lepton energy factor

(universal, because all 3 generations are involved in cylindrical condition and having the same lepton energy factor ϵ_0).

3- MicroCoM for lepton hierarchy (3)

Electron oscillating on a fixed line-segment of the time-like amplitude ϕ , formulating 1D proper (or co-moving) "volume": $V_1(\phi^+) = \phi = \psi T$;

where *T* is the 1D time-like Lagrange radius.

- For instance, ϕ plays a role of the time-like microscopic Hubble radius and the wave function ψ plays a role of the time-like scale factor.
- The mass of electron defined by 1D Lagrange "volume" will be:

$$m_1 = \rho_1 V_1 = \rho_1 \Phi = \frac{\epsilon_0}{\psi} \Psi T = \epsilon_0 T = \epsilon_0 W_1; \qquad (3.3)$$

where W_1 is the dimensionless Lagrange volume of electron.

Fig 3.2. Linearization of time axis of electron

For muon and tauon except the basic time-like cylindrical curved evolution φ^+ , it needs to add ED curvatures made by evolution in simplest configurations of hyper-spherical "surfaces":

/
$$S_1(\theta_T)$$
 and $S_1(\gamma_T)$ or ii/ $S_2(\theta_T, \gamma_T)$.

Those curvatures are seen with fixed ϕ from the cylindrical basis.

3- MicroCoM for lepton hierarchy (4)

 \Box The "co-moving volumes" $V_n(\Phi)$ with fixed $S_{n-1}(\Phi)$ are calculated as:

$$V_n(\Phi) = \int_0^{\Phi} S_{n-1}(v) dv = S_{n-1}(\Phi) \int_0^{\Phi} dv = S_{n-1}\Phi = V_1 S_{n-1}$$
(3.4)

($\boldsymbol{\Phi}$ is" fixed" from the 4D-spacetime observation due to not being able to see the additional curvatures, instead of this, observing only their flat footprints at the same maximal level $\boldsymbol{\Phi}$).

For homogeneity condition the simplest "2D-rotational co-moving volume" is:

 $V_2(\varphi^+, "\theta_T + \gamma_T") \equiv V_2(\varphi^+, \theta_T) + V_2(\varphi^+, \gamma_T) =$ = 2. $V_2 = V_1(\varphi^+)[S_1(\theta_T) + S_1(\gamma_T)] = \Phi. 2S_1 = 4\pi\Phi^2$

Accordingly, the lepton mass of 2D time-like curved particle (muon) is:

$$m_2 = \rho_2 V_2 = \rho_1 \frac{1}{\psi} \Phi. 2S_1 = \frac{\epsilon_0}{\psi^2} 4\pi \Phi^2 = \epsilon_0 4\pi T^2 = \epsilon_0 W_2; \quad (3.5)$$

The next simplest 3D-rotational co-moving volume is:

$$V_3(\varphi^+, "\theta_T \otimes \gamma_T") = V_1(\varphi^+)S_2(\theta_T, \gamma_T) = \Phi S_2 = 4\pi\Phi^3$$

Accordingly, the lepton mass of 3D time-like curved particle (tauon) is:

$$m_3 = \rho_3 V_3 = \rho_1 \frac{1}{\psi^2} \Phi S_2 = \frac{\epsilon_0}{\psi^3} 4\pi \Phi^3 = \epsilon_0 4\pi T^3 = \epsilon_0 W_3; \quad (3.6)$$

We could use the precise experimental data of electron and muon masses to determine c_0 and 7 in according to (3.3) and (3.5) as two free parameters, and then to calculate the tauon mass by (3.6), as a prediction.

3- MicroCoM for lepton hierarchy (5)

Using T = 16.454, and the lepton energy factor $\epsilon_0 = 31.056$ keV calibrated to experimental values of m_e and m_{μ} we can predict the mass of tauon m_{τ} then to come to mass ratios of all three charged lepton generations:

 $m_e: m_\mu: m_\tau = m_1: m_2: m_3 = 1:206.8:3402.2 = 0.511:105.7:1738.5$ (*MeV*); (3.7) \rightarrow Let's compare with experimental: C.Patrignani et al., Particle Data Group, Chin.Phys. C40 (2016)

n-Lepton	1-electron	2-muon	3-tau lepton
Density, $ ho_n$	$rac{\epsilon_0}{\psi}$	$rac{\epsilon_0}{\psi^2}$	$rac{\epsilon_0}{\psi^3}$
Comoving volume, \pmb{V}_n	Φ	$4\pi \Phi^2$	$4\pi \Phi^3$
Formulas of mass, $m{m_n}$	$\epsilon_0 T$	$\epsilon_0 4\pi T^2$	$\epsilon_0 4\pi T^3$
Calculated mass ratio	1	206.77	3402.18
Tpprox 16.454; $\epsilon_0=31.056~keV$			
Experimental leton	0.5109989461(31)	105.6583745(24)	1776.86(12)
mass, $\boldsymbol{m_n}~(MeV)$			
Calculated lepton mass, m_n (MeV)	0.5110*	105.66*	1738.51

The result (as for the 1rst order of approximation) is resumed in the Table 2:

*) Same experimental values m_e and m_{μ} for calibration.

The deviation of prediction from the experimental tau-lepton mass is - 2,16%.

4-2nd approximation of tauon mass by minor curvatures (1)

Fine-tuning by contribution from minor curvatures C_k to the major curvature C_n where k<n producing lepton mass m_n.
 Namely: i/ S₁ is added to S₂ major curvature ; ii/ S₁ and S₂ are added to S₃.

Electron mass is rewritten in 2nd order approximation as:

 $m_1(2) = m_1(T_2) = \varepsilon_2 \cdot T_2$. (4.1)

□ Formula of <u>muon</u> mass is upgraded as:

 $m_2(2) = m_2(T_2) \left[1 + \delta \left(\frac{C_1}{C_2} \right) \right];$ (4.2)

where $m_2(T_2) = \varepsilon_2 . 4\pi T_2^2$; $\delta\left(\frac{a}{b}\right)$ is a symbolized scale of the order of ratio $\frac{a}{b}$. As C_1 and C_2 are of different dimensions, they are re-normalized by their corresponding co-moving volumes: $\delta\left(\frac{c_1}{c_2}\right) \equiv \frac{[V_1.c_1]}{[2V_2.c_2]} = \frac{W_1}{W_2}$, which leads to a ratio of dimensionless Lagrange volumes for comparison.

4– 2nd approximation of tauon mass by minor curvatures (2)

□ In general, C_k and C_n of different dimensions are re-normalized by corresponding dimensionless Lagrange volumes as follows: $m_2(2) = m_2(T_2) \left[1 + \frac{W_1}{W_2} \right] = m_2(T_2) \left[1 + \frac{m_1(T_2)}{m_2(T_2)} \right] - m_2(T_2) + m_1(T_2).$ (4.3)

 \square <u>Tauon</u> mass is corrected up to C_2 as:

 C_3

$$m_3(2) = m_3(T_2) \left[1 + \delta \left(\frac{C_1}{C_3} \right) + \delta \left(\frac{C_2}{C_3} \right) \right]$$
(4.4)
particular: $\delta \left(\frac{C_2}{C_2} \right) = \frac{[V_2, C_2]}{C_2} - \frac{1}{2} \frac{W_2}{C_3}$ which leads to:

V2.C2

where in particular:

$$m_{3}(2) = m_{3}(T_{2}) \left[1 + \frac{m_{1}(T_{2})}{m_{3}(T_{2})} + \frac{1}{2} \frac{m_{2}(T_{2})}{m_{3}(T_{2})} \right] = m_{3}(T_{2}) + m_{1}(T_{2}) + \frac{1}{2} m_{2}(T_{2}); \quad (4.5)$$

 $2W_3$

where: $m_3(T_2) = \varepsilon_2 \cdot 4\pi T_2^3$.

4– 2nd approximation of tauon mass by minor curvatures (3)

□ The factor of $\frac{1}{2}m_2(T_2)$ in Equation (4.5) of $m_3(2)$ implies that because the principal muon mass consists of double V_2 co-moving volume as:

 $m_2(T_2) = W_1 \rho_1 [S_1(\theta_T) + S_1(\gamma_T)] \sim C_2 [V_2(\varphi^+, \theta_T) + V_2(\varphi^+, \gamma_T)]$

 \rightarrow different factors of C_2 contribution for <u>muon</u> and <u>tauon</u> mean that in Equation (4.3) C_2 refers to <u>muon</u> mass (- double V_2), while in Equation (4.5) C_2 relates to a correction to <u>tauon</u> mass, taking a single V_2 only.

 \rightarrow In the result, both corrected configurations of <u>muon in (4.3)</u> and of <u>tauon</u> in (4.5) contain equally a structural term $m_1(T_2)$ to meet the requirement that they are involved in the same basic time-like cylindrical geodesic evolution like electron.

4– 2nd approximation of tauon mass by minor curvatures (4)

Two new free parameters T_2 and $ε_2$ are determined based on experimental electron and muon masses as:

 $T_2 = \frac{1}{4\pi} (R_{21} - 1) = 16.37451965.$ $\epsilon_2 = 31.20695794 \text{ (keV)}$

where R_{21} is the experimental mass ratio of <u>muon</u> to electron.

□ Now Equation (4.5) for calculation of <u>tauon</u> mass in the second approximation leads to: $m_3(2) = 1774.82$ (MeV).

→The uncertainty of this theoretical prediction is ignorable, because it depends only on experimental errors of electron and <u>muon</u> masses. →The calculation in the second order approximation deviates from the experimental <u>tauon</u> mass by 0.11% which is by 18.8 times better than the prediction in the first approximation (2.16%). 5-3rd approximation by perturbative fine-tuning minor curvatures (1)

□ The next infinite perturbative orders of minor curvatures C_k to the major curvature C_n .

Electron mass is modified as: $m_1(\infty) = m_1(T_\infty) = \varepsilon_\infty, T_\infty.$ (5.1)

□ Formula of <u>muon</u> mass is upgraded as:

$$m_2(\infty) = m_2(T_\infty) \left\langle 1 + \sum_{q=1}^{\infty} \left[\delta\left(\frac{C_1}{C_2}\right) \right]^q \right\rangle = m_2(T_\infty) \sum_{q=0}^{\infty} \left[\delta\left(\frac{C_1}{C_2}\right) \right]^q; \quad (5.2)$$

 \rightarrow After re-normalization it leads to:

$$m_{2}(\infty) = m_{2}(T_{\infty}) \sum_{q=0}^{\infty} \left[\frac{m_{1}(T_{\infty})}{m_{2}(T_{\infty})} \right]^{q} = m_{2}(T_{\infty}) + m_{1}(T_{\infty}) \frac{\rho_{21}}{\rho_{21}-1}; \quad (5.3)$$

where $m_2(T_{\infty}) = \varepsilon_{\infty} \cdot 4\pi T_{\infty}^2$.

5–3rd approximation by perturbative fine-tuning minor curvatures (2)

□ The summations converge in infinity to finite quantities as:

$$\sum_{q=0}^{\infty} \frac{1}{\rho_{ij}^{q}} = \frac{\rho_{ij}}{\rho_{ij}^{-1}}; \quad (5.4)$$

where for $i > j$: $\rho_{ij} = \frac{m_i(T\infty)}{m_j(T\infty)} > 1$

Tauon mass is corrected in infinity perturbative orders as:

$$m_{3}(\infty) = m_{3}(T_{\infty}) + m_{1}(T_{\infty}) \sum_{p=0}^{\infty} \left[\delta\left(\frac{C_{1}}{C_{2}}\right) \right]^{p} \cdot \sum_{q=0}^{\infty} \left[\delta\left(\frac{C_{1}}{C_{3}}\right) \right]^{q} + \frac{1}{2} m_{2}(T_{\infty}) \sum_{q=0}^{\infty} \left[\delta\left(\frac{C_{2}}{C_{3}}\right) \right]^{q}; \quad (5.5)$$

 \rightarrow which leads to:

$$\mathbf{m}_{3}(\infty) = \mathbf{m}_{3}(T_{\infty}) + m_{1}(T_{\infty}) \frac{\rho_{21}}{\rho_{21} - 1} * \frac{\rho_{31}}{\rho_{31} - 1} + \frac{1}{2}m_{2}(T_{\infty}) \frac{2\rho_{32}}{2\rho_{32} - 1}; \quad (5.6)$$

where: $m_3(T_{\infty}) = \varepsilon_{\infty} \cdot 4\pi T_{\infty}^3$.

5–3rd approximation by perturbative fine-tuning minor curvatures (3)

□ Two new free parameters T_2 and ε_2 are determined based on experimental electron and muon masses as:

 $T_{\infty} = \frac{1}{4\pi} \cdot \rho_{21} = 16.37413102, \quad \{\text{where } \rho_{21} = f(R_{21}) \text{ is determined from the} \\ \text{experimental ratio } R_{21} = \frac{m_2(exp)}{m_1(exp)} = \frac{m_2(\infty)}{m_1(\infty)} = \rho_{21} + \frac{\rho_{21}}{\rho_{21}-1} \}$ and: $\epsilon_{\infty} = 31.20769862$ (keV).

□ By Equation (5.6), in the third approximation: $m_3(\infty) = 1776.40$ (MeV). → This theoretical prediction has also ignorable uncertainty due to high precision of the experimental electron and <u>muon</u> masses.

The fine-tuning approximation in infinite perturbation is 83.4 times better than the prediction in the first approximation.

□ In accordance with the notion of the curved <u>3D</u>-time, it is noticed that all ratios ρ_{ij} are enough large which make all summations $\sum_{q=0}^{\infty} \frac{1}{\rho_{ij}^{q}}$ last converged at powers of a perturbative order not higher than the major curvature order in each formula, i.e. $q \leq n \leq 3$.

6– Discussion (1)

Similar to STM theory (Wesson et al.), our time-space symmetrical (TSS) model shows that 4D-Quantum Mechanics originates from the Higher-dimensional General Relativity:

TSS geometrical dynamical approach clarifies QM phenomena (meaning of quantum operators, derivation of KGF equation, Heisenberg inequalities, wave-particle duality, origin of Bohm quantum potential, Schrodinger Zitterbewegung)...

→ The extended space-time can accommodate the 4D-SM of QFT.

→ also serves a basis for a Microscopic Cosmological model: Hubble expansion mechanism is applied in microscopic 3D-time subspace that leads to different time-like configurations with hyper-spherical curvatures.

→ Applying the model with a maximal time-like dimension (3D) :
 By extending cylindrical curvature to additional 2D and 3D time-like hyper-spherical configurations:

mass ratios of charged leptons are estimated satisfactory.

6– Discussion (2)

The only quantitative prediction of tauon mass has been achieved by Koide empirical formula based on electron and muon masses:

$$m_e + m_\mu + m_\tau = \frac{2}{3}(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2$$

 \rightarrow which leads to the quantity $m_{\tau}(Koide) = 1776.97$ MeV being in an excellent agreement within 1. σ with experimental tauon mass

 $m_{\tau}(exp) = 1776.86 \pm 0.12$ MeV.

Some geometrical interpretation of Koide formula was proposed by Kocik (arXiv: 1201.2067v1[physics.gen-ph]) where mass correlations are expressed through Descartes-like circles or with their corresponding squared curvatures.

 \rightarrow However, no more physics could be developed after this point.

Sumino assumed the family gauge symmetry U(3) with new gauge bosons at 10E2-10E3 TeV scale to maintain the Koide formula, which due to breaking leads to the SM as an effective field (EFT).

 \rightarrow The problem: it seems to require higher symmetries at very high energies, which takes time for the next accelerator generation.

6– Discussion (3)

- In opposite, our TSS based MicroCoM demonstrates an explicit physical interpretation, which serves a solution to the problem of charged lepton mass hierarchy :
- the 3D of time-like sub-space is a constraint of the number of lepton generations (exacting number 3);
- > the basic common time-like cylindrical evolution ensures the causality by one-directional evolution (toward the future) and together with two universal free parameters (T_∞ and ε_∞) explains why three lepton generations have similar properties.
- A theoretical calculation by TSS-MicroCoM in perturbative approximation leads to prediction :

 $m_3(\infty) = 1776.40 \text{ MeV};$

→ which is a fairly passable consistency with experimental tauon mass : $m_{\tau}(exp) = 1776.86 \pm 0.12$ MeV.

 \rightarrow From another perspective, as the deviation of calculation is still 3.83 σ , It needs further research for any new hyper-fine adjustment of the present theoretical calculation.

The Literature Pagoda in Hanoi

Thank You for Attention!

Appendix 1: Why Bi-Cylindrical Geometry ?

The Bi-cylindrical Formalism is implemented in the following steps:

- Formulation of bi-cylindrical geometry of {3T-3X} time-space symmetry where the two 3D sub-spaces are orthonormal to each other.
- Vacuum solutions of general relativity equation in such geometry
- Fransformation of the bi-cylindrical variables in to the functions $\psi = \psi(y)$ and $\varphi = \varphi(y)$ of $y \equiv \{t_0, t_3, x_n, x_3\}$ in {3T-3X} time-space symmetrical geometry.
- Most convenient functions are exponential for imitation of both Hubblelike expansion and quantum waves. Those functions are naturally separable for their variables.
- □ A Higgs-like interaction for violating the time-space symmetry:
- A Lorentz-like condition is introduced for cancelation of all longitudinal fluctuations, which conserves the linear translational equation (CLT) in transformation from a higher dimensional (6D-) geometry to a lower (4D-) realistic geometry.
- Accordingly, the separated geodesic conditions in 3D sub-spaces ensure that due to a symmetry-breaking, their scales are able to renormalized independently following an invariant formalism.
- → Non-zero mass terms appeared.

Appendix 2 - Why Dual Solution ?

Duality of the solution of 6D-Bi-Cylindrical GR Equation :

- Bi-cylindrical geodesic equation (2.13);
- Wave-like solution (2.14):
- \rightarrow Dual sub-solutions describe the same physical substance.
- Serving for Quantum Mechanical Interpretations:
- \succ From Wave-like Equation \rightarrow a generalized QM equation is derived: KGF;
- From separated 3D-local geodesic conditions (in 3T and 3X): Heisenberg inequalities are derived.

Qualitative explanation of QM phenomena: i/ Physical meaning of the QM energy-momentum operators; ii/ Wave-particle duality; iii/ Bohm quantum potential; iv/ Schrodinger ZBW (*Zitterbewegung*).

□ Then, for Formation of a microscopic cosmological model with a cylindrical basis from 3D-local geodesic equation in 3T → the Hubble-like expansion is in homogeneous and isotropic conditions.

Appendix-3: Calculation of curvature tensors

Christoffel symbols: by applying (9) following are found valid:

$$\begin{split} \Gamma^{\Psi}_{\varphi\varphi} &= -\frac{g^{\Psi\Psi}}{2} \frac{\partial g_{\varphi\varphi}}{\partial \psi} = -\frac{1}{H_{y}} \frac{\partial \Psi}{\partial y} \;; \; \; \Gamma^{\varphi}_{\Psi\varphi} = \Gamma^{\varphi}_{\varphi\Psi} = \frac{g^{\varphi\varphi}}{2} \frac{\partial g_{\varphi\varphi}}{\partial \psi} = \frac{1}{\psi^{2}H_{y}} \frac{\partial \Psi}{\partial y} \\ \Gamma^{3}_{\varphi\varphi\varphi} &= -\frac{g^{33}}{2} \frac{\partial g_{\varphi\varphi}}{\partial y_{3}} = -\frac{1}{2} \frac{\partial(\psi^{2})}{\partial y_{3}} = -\psi \frac{\partial \Psi}{\partial y_{3}} \;; \; \; \Gamma^{\varphi}_{3\varphi} = \Gamma^{\varphi}_{\varphi3} = \frac{g^{\varphi\varphi}}{2} \frac{\partial g_{\varphi\varphi}}{\partial y_{3}} = \frac{1}{2\psi^{2}} \frac{\partial(\psi^{2})}{\partial y_{3}} = \frac{1}{\psi} \frac{\partial \Psi}{\partial y_{3}} \;. \end{split}$$

Ricci tensors for the bi-3D cylindrical geometry:

$$R_{\psi\psi} = -\frac{\partial\Gamma_{\psi\psi}^{\phi}}{\partial y} \left[\frac{\partial y}{\partial \psi} \right] - \Gamma_{\psi\varphi}^{\phi} \Gamma_{\psi\varphi}^{\phi} = -\frac{1}{\psi^{3}H_{y}^{2}} \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{1}{\psi^{4}H_{y}^{2}} \left(\frac{\partial\psi}{\partial y} \right)^{2};$$

$$R_{33} = -\frac{\partial\Gamma_{\varphi3}^{\phi}}{\partial y_{3}} - \Gamma_{3\varphi}^{\phi} \Gamma_{3\varphi}^{\phi} = -\frac{1}{\psi} \frac{\partial^{2}\psi}{\partial y_{3}^{2}};$$

$$R_{\varphi\varphi} = \frac{\partial\Gamma_{\varphi\psi}^{\psi}}{\partial y} \left[\frac{\partial y}{\partial \psi} \right] + \frac{\partial\Gamma_{\varphi\varphi}^{3}}{\partial y_{3}} - \Gamma_{\varphi\psi}^{\phi} \Gamma_{\varphi\varphi}^{\psi} - \Gamma_{\varphi3}^{\phi} \Gamma_{\varphi\varphi}^{3} = -\frac{1}{\psi^{H}} \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{1}{\psi^{2}H_{y}^{2}} \left(\frac{\partial\psi}{\partial y} \right)^{2} - \psi \frac{\partial^{2}\psi}{\partial y_{3}^{2}};$$
Obviously, $R = g^{im}R_{im} = \delta_{i}^{m}R_{i}^{m} = -\frac{2}{\psi^{3}H_{y}^{2}} \frac{\partial^{2}\psi}{\partial y^{2}} + \frac{2}{\psi^{4}H_{y}^{2}} \left(\frac{\partial\psi}{\partial y} \right)^{2} - \frac{2}{\psi} \frac{\partial^{2}\psi}{\partial y_{3}^{2}}.$
Sespace-time representation reads: $R = \delta_{\gamma}^{\sigma}R_{\gamma}^{\sigma}(X) - \delta_{\alpha}^{\beta}R_{\alpha}^{\beta}(T).$

It

The meaning of quantum energy momentum operators:

Mathematical transformation from the geodesic equation (2.13) with an exponential solution to a wave-like solution (2.14) is performed by transformation of variables: $t \rightarrow -it$ and $x_j \rightarrow ix_j$ in similar to that of quantum dynamic operators. This is not only a mathematical formalism, but also a significant physical operation, equivalent to transformation from external to internal investigation. Indeed, for the phase $\varphi = \Omega t - k_j x_j = const$ in the internal phase continuum: the phase velocity is superluminal, i.e. $v_{phase} = \frac{dx_j}{dt} = \frac{\Omega}{k_j} > c$. It is equivalent to converting the role of space $\leftarrow \rightarrow$ time in the internal superluminal frame comparing with the external subluminal space-time.

Wave-particle duality:

Subjecting the same microscopic substance:

i/ the monotonic exponential solution describes motion/evolution of a material point, as a localized particle; while

ii/ the wave-like solution transforming into QM equation (KGF) describes the motion/evolution of same particle, but as a wave-like substance.

Appendix–4: Outputs from the dual solutions of GR (2)

Based on 3D-local geodesic deviation acceleration conditions (2.11-T) and (2.11-X), we can understand some important QM phenomena:

Bohm quantum Potential:

$$\left(\frac{\partial S}{\partial x_n}\right)^2 = B_e(\hbar, k_n, \mu_e)^2_{even} = \frac{\hbar^2}{\psi} \frac{\partial^2 \psi}{\partial x_n^2} = -2mQ_B; \quad (2.11-B)$$

which is proportional to Bohm's quantum potential Q_B .

Schrödinger's Zitterbewegung:

The existence of the spin term in Generalized QM Klein-Gordon-Fock equation (2.15) is reminiscent of ZBW of free electron.

→ When we describe a linear translation of the freely moving particle by Equation (2.17), the ZBW term is almost compensated by the geodesic condition (2.11-X) except a tiny P-odd term (However the latter is hard to observe).

Appendix-5: Heisenberg Indeterminism (1)

A. Coordinate-momentum inequality: > The local geodesic condition (2.10) leads to: $\frac{1}{\psi}d\left(\frac{\partial\psi}{\partial x_n}\right) dx_n = d\varphi^2 \ge 0$; (H1) $\Rightarrow |\Delta p|. |\Delta x| \ge |\Delta p_n|. |\Delta x_n| > \psi^{-1} \left| d\left(i. \hbar \frac{\partial \psi}{\partial x_n}\right) \right|. |dx_n| = |i.\hbar|. d\varphi^2 \ge 0; \quad (H2)$ Accepting the conditions: i/ Quantization of azimuth: $\varphi = n.2\pi$; ii/ For Poisson/Gaussian distribution of quantum statistics: $\langle \phi \rangle_{min} = 2\pi$ and $d\phi \approx$ $\sigma_{\varphi} = \sqrt{2\pi}$ = standard deviation. \rightarrow Then, from (H2): $|\Delta p|$, $|\Delta x| > 2\pi$ h. (H3) **B.** Time-energy inequality: Following 3D-time local geodesic condition (2.10) : $\frac{1}{\psi}d\left(\frac{\partial\psi}{\partial t_0}\right)$. $dt_0 = d\varphi^2 \ge 0$; (H4) $\rightarrow |\Delta E|. |\Delta t| \geq |\Delta E_0|. |\Delta t_0| > \psi^{-1} \left| d\left(i. \hbar \frac{\partial \psi}{\partial t_0}\right) \right|. |dt_0| = |i. \hbar|. d\varphi^2 \geq 0;$ (H5) \rightarrow With the same conditions (i) and (ii): $|\Delta E| |\Delta t| > 2\pi \hbar$. (H6) The inequalities (H3) and (H6) show that the QM indeterminism takes origin from the curvatures of space and time.

Appendix-5: Heisenberg indeterminism (2)

□ For a local geodesic in closed 3D-time:

$$rac{1}{\psi}d\left(rac{\partial\psi}{\partial t_0}
ight)$$
. $dt_0=darphi^2\geq 0$;

□ Multiplying both sides on the quantum scale unit *i*.ħ, and turning to finite differentials we get the time-energy indetermination: $|\Delta E|. |\Delta t| \ge |\Delta E_0|. |\Delta t_0| > |dE_0|. |dt_0| =$

$$= \psi^{-1} |d(E_0, \psi) dt_0| = \psi^{-1} \left| d\left(i.\hbar \frac{\partial \psi}{\partial t_0}\right) dt_0 \right| =$$
$$= |i.\hbar| \cdot d\varphi^2 \ge 0;$$

where due to involving in the internal curvature $E_0(n) = m_0$ $(n) = \frac{A_n}{\psi^n}$ then, in average:

$$\langle |d(E_0,\psi)| \rangle = \langle |\psi d(E_0) + E_0 d(\psi)| \rangle = \langle |\psi dE_0| \pm \frac{1}{n} |(\psi dE_0)| \rangle = |\psi dE_0|.$$

□ Similarly we can get the space-momentum indetermination.

Appendix–6: A scenario similar to the Standard cosmological model (A hypothesis)

During the Big-Bang inflation, we suggest the following *scenario of MicroCoM*, *similar to the Standard Cosmological model of the Universe*:

The micro-scale factor ψ increases exponentially (time-like Hubble constant $H_T = \sqrt{\Lambda_T} = 7.764^*10^{20} \ sec^{-1}$ and the instant of inflation $\Delta t_1 = 1.926 * 10^{-20}$ sec after 1 sec from the Big-Bang).

For the next time-life of the Universe =13.7 *10⁹ years, based on the idea of time-space symmetry, it is assumed for 3D-time (exactly as in 3D-space): $\psi \sim t^{1/2}$ for radiation dominant era and $\psi - t^{2/3}$ for matter dominant era.

In a result, the time-like Lagrange radius *T* decreases from $T_0 = \frac{\Phi}{\psi_0} = 1$ for Δt_1 then steps up to the present value $T = \frac{\Phi}{\psi} \approx 16.5$.

For leptons born after the inflation era, assuming following anthropic principle (very *qualitatively*) that the Hubble radius of any quantum fluctuations should adapt the contemporary value Φ , while the scale factor ψ being governed by a contemporary chaotic Higgs-like potential in such a way, that is to meet the contemporary time-like Lagrange radius *T* (for today, *T* =16.5).