Rencontres du Vietnam-2018 Windows on the Universe

A fine-tuned interpretation of the charged lepton mass hierarchy in a microscopic cosmological model

Vo Van Thuan

Duy Tan University (DTU)
3 Quang Trung street, Hai Chau district, Danang, Vietnam
Vietnam Atomic Energy Institute (VINATOM-Hanoi)
Email: vvthuan@vinatom.gov.vn

ICISE-Quy Nhon, Vietnam, August 05-11, 2018

Contents

1. Time-Space Symmetry: Motivation-Cylindrical Geometry
2. Dual solutions of the gravitational equation for a microscopic cosmology
3. Charged lepton mass hierarchy in the first order approximation
4. The second approximation of tauon mass by minor curvatures
5. The third approximation by perturbative fine-tuning minor curvatures
6. Discussion

- Problems: The origin of the Mass Hierarchy of elementary fermions?
\square Fermion masses are induced in interaction of genetic particles with Higgs field. All Yukawa couplings are determined independently.
\rightarrow Interpretation of mass hierarchy within the Standard Model (SM) or even in moderate extension of SM are mostly phenomenological with qualitative predictions (e.g. models with flavor democracy, quark-lepton correspondences etc.).
1/ Quark mass hierarchy is parametrized by CKM mixing matrices being in consistency with QCD within SM;

2/ Neutrino mass hierarchy and their masses are parametrized by MNSP mixing matrices, being solved by extension of SM or by Beyond SM approaches;

3/ Mass hierarchy of charged leptons is as large as of both up-type and down-type quarks. Probably, this is a Beyond SM problem !
\rightarrow Exception: an excellent prediction by the Koide empirical formula, the origin of which is interpreted by Sumino in correlation with vacuum expectations of heavier family gauge bosons at 10E2-10E3 TeV.

1- Time-Space Symmetry (2): Motivation
\square Objectives: To solve the mass hierarchy problem of charged leptons and to predict tauon mass with high accuracy.

- Motivations of the present research: Looking for an alternative Beyond SM \equiv Higher-dimensional space-time approach.
1/ Searching for a link between: GR and QM,
\rightarrow To formulate a "microscopic" cosmological model (MicroCoM) to describe masses and mass hierarchy of leptons.

2/ Searching for a link between:
The number of dimensions = The number of lepton generations.
\rightarrow To add time-like EDs up to 3D-time: Time-Space Symmetry=\{3T-3X\}:
$\rightarrow 3$ orders of time-like curvatures induce masses of 03 charged leptons (electron, muon, tauon).
\rightarrow To predict the mass ratios and to calculate the absolute masses of charged leptons.

1- Time-Space Symmetry (3): References

\square Phenomenological interpretations within SM or by moderate extension of SM. See, e.g. reviews:
[1] H. Fritzsch and Z.Z.Xing, Phys.Rev.D61 (2000)073016.
[2] W.G.Hollik, U.J.S.Salazar, Nucl.Phys.B892(2015)364.
\square Koide empirical formula (an excellent prediction of tauon mass):
[3] Y.Koide, Phys.Lett.B 120(1983)161.
[4] Y. Sumino, Phys.Lett.B671(2009)477 (Effective field theory interpretation of Koide formula by family gauge symmetry $\mathrm{U}(3)$ broken at $10^{3}-10^{3} \mathrm{TeV}$).
\square Beyond SM- an alternative: ED geometrical dynamics - Modern KaluzaKlein Theories: 5D Space-Time-Matter (STM) theory is applied for QM:
[5] P.S. Wesson, Phys.Lett.B 701(2011)379; Phys.Lett.B 706(2011)1;
[6] Phys.Lett.B 722(2013)1; IJMPD 24(2015)1530001.
\square Following induced matter approach we proposed a semiphenomenological model with \{3T-3X\} Time-Space Symmetry (TSS):
Bi-cylindrical GR Equation \rightarrow Formulation of the Microscopic Cosmology in $3 T$ sub-space \rightarrow Charged lepton mass hierarchy \rightarrow Tauon Mass:
[7] Thuan Vo Van, Foundations of Physics 47(2017)1559.
[8] Vo Van Thuan, arXiv:1711.08346 [physics.gen-ph] to be published.
\square In an ideal 6D flat time-space $\left\{t_{1}, t_{2}, t_{3} \mid x_{1}, x_{2}, x_{3}\right\}$ considering orthonormal sub-spaces 3D-time and 3D-space:

$$
\begin{equation*}
d S^{2}=d t_{k}^{2}-d x_{l}^{2} ; \text { summation: } k, l=1 \div 3 \tag{1.1}
\end{equation*}
$$

\square Our physics works on its symmetrical "light-cone":

$$
\begin{equation*}
d \vec{k}^{2}=d \vec{l}^{2} \quad \text { or } d t_{k}^{2}=d x_{l}^{2} ; \text { summation: } k, l=1 \div 3 \tag{1.2}
\end{equation*}
$$

Natural units ($\hbar=c=1$) used unless it needs an explicit quantum dimension.
\rightarrow It is equivalent to a 6D-vacuum with: $d S=0$.
\square Introducing a 6D isotropic plane wave equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi_{0}}{\partial t_{k}^{2}}=\frac{\partial^{2} \psi_{0}}{\partial x_{l}^{2}} \tag{1.3}
\end{equation*}
$$

> Where $\psi_{0}\left(t_{k}, x_{l}\right)$ is a harmonic correlation of $d t$ and $d x$, containing only linear variables $\left\{t_{k}, x_{l}\right\}$, serving a primitive source of quantum fluctuations in space-time. All chaos of displacements $d t$ and $d x$ can form averaged timelike and space-like global potentials V_{T} and V_{X}.

- Suggesting that the global potentials, originally, accelerating linear spacetime into curved time-space which describes 3D spinning $\vec{\tau}$ and \vec{s} in symmetrical orthonormal subspaces of 3D-time and 3D-space.
\square For a kinetic state (curved rotation + linear translation): $\left\{t_{3}, x_{3}\right\}$ are accepted as longitudinal central axes of a symmetrical bi-cylindrical geometry $\left(\psi, \varphi, t_{k} \mid \psi, \varphi_{,}, x_{l}\right)$;
The curved coordinates for 3D-space: $\left\{x_{j}\right\} \equiv\left\{x_{1}, x_{2}, z\right\}$ with $d z^{2}=d x_{n}{ }^{2}+d x_{3}{ }^{2}$;
Similarly, for 3D-time there are $\left\{t_{i}\right\} \equiv\left\{t_{1}, t_{2}, t\right\}$ with $d t^{2}=d t_{0}{ }^{2}+d t_{3}{ }^{2}$.
$\rightarrow t_{0}$ and x_{n} are local affine parameters in 3D-time and 3D-space, respectively.

EDs turn into dynamical functions of other space-time dimensions:
$\psi=\psi\left(t_{0}, t_{3}, x_{n}, x_{l}\right)$ and $\varphi=\Omega t-k_{j} x_{j}=\Omega_{0} t_{0}+\Omega_{3} t_{3}-k_{n} x_{n}-k_{l} x_{l} ;$

Here $\psi=\psi(\mathrm{T}) \cdot \psi(X)$ is variable-separable and φ is linear dependent.
\rightarrow Possible to express them in a bi-cylindrical geometry.
\square In observation of an individual lepton ($\tau_{n}, s_{n}= \pm 1 / 2$), due to interaction of a Higgs-like potential V_{T} the time-space symmetry being spontaneously broken for forming energy-momentum ($d s_{0} \gg d \sigma_{\text {spin }} \gg d \sigma_{P N C} \gg d s_{C P V}$) leads to an Asymmetrical Bi-cylindrical Geometry:

$$
\begin{align*}
& d \Sigma_{A}^{2} \equiv d S^{2}+d \sigma^{2}=\left(d s_{0}{ }^{2}+d s_{C P V}{ }^{2}\right)-\left(d \sigma_{s p i n}{ }^{2}+d \sigma_{P N C}{ }^{2}\right)=d t^{2}-d z^{2}= \\
&= {\left[d \psi\left(t_{0}, t_{3}\right)^{2}+\psi\left(t_{0}, t_{3}\right)^{2} d \varphi\left(t_{0}, t_{3}\right)^{2}+d t_{3}{ }^{2}\right]-} \\
&-\left[d \psi\left(x_{n}, x_{3}\right)^{2}+\psi\left(x_{n}, x_{3}\right)^{2} d \varphi\left(x_{n}, x_{3}\right)^{2}+d x_{3}{ }^{2}\right] . \tag{1.5}
\end{align*}
$$

\square The Asymmetrical Geometry (5) for charged leptons :

$$
\begin{equation*}
d S_{e}{ }^{2} \approx d s_{0}{ }^{2}-d \sigma_{\text {Spin }^{2}}{ }^{2}=d t^{2}-d z^{2} \equiv d t^{2}-d x_{j}{ }^{2} ; \tag{1.6}
\end{equation*}
$$

\rightarrow It resembles the special relativity (SR), however, here coordinates $\{\mathrm{t}, \mathrm{z}\}$ are curved.

Fig.1.1. Asymmetrical bi-cylindrical geometry:
-Time-like curvature $d s_{0}$: odd term, being strong and almost absolute;
-Space-like curvature $d \sigma_{\text {spin }}$: even term being not absolute (quasi-curvature)

1- Time-Space Symmetry (7): Breaking Symmetry Phenomenological assumptions

$d S$ and $d \sigma$ are time-like and space-like intervals introduced for compensating the curvatures to maintain a conservation of linear translation (CLT) in a relation to (1) and (2). From a semi-phenomenological view:

$$
\begin{aligned}
d S^{2} & =d s_{o d d}{ }^{2}-d s_{e v e n}{ }^{2}
\end{aligned}=d s_{0}{ }^{2}-d s_{C P V}{ }^{2}{ }^{2}=d \sigma_{P N C}{ }^{2}-d \sigma_{\text {Spin }}{ }^{2} .
$$

Table 1. Semi-phenomenological based Data for curved geometries of leptons:

Dynamics source	Higgs-like potential	Weak interaction	CPV potential	Spatial spinning
Corresponding Interval	$\boldsymbol{d s} S_{\text {odd }}$	$\boldsymbol{d} \sigma_{\text {odd }}$	$\boldsymbol{d s} \boldsymbol{s}_{\text {even }}$	$d \sigma_{\text {even }}$
For heavy leptons (e, μ, τ)	Major	Weak	Super weak	Minor
Corresponding Rotational character	$\boldsymbol{h}_{\boldsymbol{\tau}}$ Iso-Helicity	h_{s} Helicity	τ (time-like) Pseudo-spin	S (space-like) Spin
The Asymmetrical Geometry (5) for charged leptons : $\begin{equation*} d S_{e}^{2} \approx d s_{0}^{2}-d{\sigma_{S p i n}}^{2}=d t^{2}-d z^{2} \equiv d t^{2}-d x_{j}^{2} \tag{1.6} \end{equation*}$ It resembles the special relativity, however, here coordinates $\{\mathbf{t}, \mathrm{z}\}$ are curved.				

2- A duality of higher-dimensional gravitational equation (1)

\square Applying Geometry (1.6) with signatures $\{---+++\}$ of bi-cylindrical curvatures, the gravitational equation in vacuum $\left(T_{i}^{m}=0\right)$ reads:

$$
\begin{equation*}
R_{i}^{m}-\frac{1}{2} \delta_{i}^{m} R=0 \tag{2.1}
\end{equation*}
$$

In an apparent vacuum $\Lambda=0$, Eq. (2.1) leads to $\{3 T, 3 X\}$-Ricci vacuum equation:

$$
\begin{equation*}
R_{\alpha}^{\beta}(T)+R_{\gamma}^{\sigma}(X)=0 . \tag{2.2}
\end{equation*}
$$

Where Ricci tensors with $\alpha, \beta \in 3 D$-time $=3 T$ and ones with $\gamma, \sigma \in 3 D$-space $=3 X$.

Recalling $\psi=\psi(y)$ and $\varphi=\varphi(y)$ are functional, where: $y \equiv\{t, z\} \in\left\{t, x_{j}\right\} \equiv$ $\left\{t_{0}, t_{3}, x_{n}, x_{l}\right\} \in\left\{t_{i}, x_{j}\right\} ; y_{3} \equiv\left\{t_{3}, x_{3}\right\}$ being implicitly embedded in 3D-time: $t_{3} \in\left\{t_{k}\right\}$ and in 3D-space: $x_{3} \in\left\{x_{1}\right\}$, respectively.
\rightarrow Prior assuming the Hubble law of the cosmological expansion is applied to the Bi-Cylindrical Geometry (1.6) of microscopic space-time:

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=v_{y}=H_{y} \psi \text { and therefore }\left[\frac{\partial y}{\partial \psi}\right]=\frac{1}{H_{y} \psi} ; \tag{2.3}
\end{equation*}
$$

Where H_{y} is the "micro-Hubble constant", then the expansion rate v_{y} increases proportional to the "micro-scale factor" ψ;

2- A duality of higher-dimensional gravitational equation (2)

- GR equation (2.2) with only diagonal terms leads to two independent subequations:

$$
\begin{align*}
R_{3}^{3}(T)+R_{3}^{3}(X) & =0 ; \tag{2.4}\\
R_{\psi}^{\psi}(T)+R_{\psi}^{\psi}(X) & =0 ; \tag{2.5}
\end{align*}
$$

\square Sub-equation (2.4) defines conservation of linear translation (CLT) of Eq. (1.3):

$$
\begin{equation*}
-\frac{\partial^{2} \psi}{\partial t_{3}{ }^{2}}+\frac{\partial^{2} \psi}{\partial x_{3}{ }^{2}}=0 . \tag{2.6}
\end{equation*}
$$

which leads to a Lorentz-Iike condition for compensating longitudinal fluctuations:

$$
\begin{equation*}
\left(\omega_{3}^{2}-k_{3}^{2}\right) \psi=0 . \tag{2.7}
\end{equation*}
$$

\square The sub-equation (2.5): in a time-space symmetrical representation, accounting Lorentz-like condition (2.7) reads:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-\left(\frac{\partial \varphi}{\partial t_{0}}\right)^{2} \psi=\frac{\partial^{2} \psi}{\partial x_{j}^{2}}-\left(\frac{\partial \varphi}{\partial x_{n}}\right)^{2} \psi \tag{2.8}
\end{equation*}
$$

Where $y=\left\{t_{i}, x_{j}\right\}$ as for summation of time-like and space-like variables; due to the 3D-local orthogonality: $\quad \frac{\partial^{2} \psi}{\partial t^{2}}=\frac{\partial^{2} \psi}{\partial t_{0}{ }^{2}}+\frac{\partial^{2} \psi}{\partial t_{3}{ }^{2}} \quad$ and $\quad \frac{\partial^{2} \psi}{\partial x_{j}{ }^{2}}=\frac{\partial^{2} \psi}{\partial x_{n}{ }^{2}}+\frac{\partial^{2} \psi}{\partial x_{l}{ }^{2}}$.

2- A duality of higher-dimensional gravitational equation (3)

- For a homogeneity condition \rightarrow Eq.(2.8) is getting a symmetrical equation of bigeodesic acceleration of deviation ψ :

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t_{0}{ }^{2}}-\left(\frac{\partial \varphi}{\partial t_{0}}\right)^{2} \psi=\frac{\partial^{2} \psi}{\partial x_{n}{ }^{2}}-\left(\frac{\partial \varphi}{\partial x_{n}}\right)^{2} \psi . \tag{2.10}
\end{equation*}
$$

Due to 3D local geodesic conditions in 3D-time and in 3D-space, both sides in (2.10) are getting independent:

$$
\begin{array}{ll}
\text { In 3D-time: } & \frac{\partial^{2} \psi}{\partial t_{0}{ }^{2}}-\left(\frac{\partial \varphi}{\partial t_{0}}\right)^{2} \psi=0 . \\
\text { In 3D-space: } & \frac{\partial^{2} \psi}{\partial x_{n}{ }^{2}}-\left(\frac{\partial \varphi}{\partial x_{n}}\right)^{2} \psi=0 . \tag{2.11-X}
\end{array}
$$

Then it leads to de Sitter-like exponential sub-solutions being able to describe Hubble-like expansion in microscopic 3D-time or 3D-space, correspondingly.
\rightarrow Those conditions will be applied in a so-called "microscopic" cosmological model (MicroCoM) for lepton mass hierarchy.
\rightarrow The separated geodesic conditions in 3D sub-spaces ensure that due to a symmetry-breaking, their scales are able to renormalized independently without violation of an invariant formalism. In a result \rightarrow Non-zero mass terms appeared.

2- A duality of higher-dimensional gravitational equation (4)

\square Recall that Geometry (1.6) is formulated due to a Higgs-like potential, producing time-like polarization $V_{T} P \Rightarrow \mathrm{P}^{+}$and a week space-like PNC:

$$
\begin{equation*}
\left(V_{T} P\right)^{2}=\left[V_{T}\left(\frac{\partial \varphi}{\partial t_{0}^{+}}+\frac{\partial \varphi}{\partial t_{0}^{+}}\right)\right]^{2} \psi \equiv\left[f_{e}\left(\chi+\phi_{0}\right)\right]^{2} \psi \Rightarrow\left(P^{+}\right)^{2}=\left(\frac{\partial \varphi}{\partial t_{0}}\right)^{2} \psi \equiv\left(f_{e} \phi_{0}\right)^{2} \psi=m_{0}^{2} \psi ; \tag{2.12}
\end{equation*}
$$

where χ is Higgs field and ϕ_{0} is Higgs vacuum; f_{e} is Higgs-electron interaction coupling .
\rightarrow Transformation from 6D time-space to 4D space-time is performed.
\rightarrow Then Geodesics (2.8) turns to a formal 4D Asymmetrical equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t^{2}}-\frac{\partial^{2} \psi}{\partial x_{j}^{2}}=\left[\left[\boldsymbol{\Lambda}_{T}-\left(\frac{\partial \varphi}{\partial x_{n}}\right)_{\text {even }}^{2}-\boldsymbol{\Lambda}_{L}\right] \psi ;\right. \tag{2.13}
\end{equation*}
$$

where : Effective strong potentials V_{T} of a time-like "cosmological constant" Λ_{T} with a residue of P-odd component Λ_{L} fulfilled breaking symmetry: $\left[\boldsymbol{\Lambda}_{T}-\boldsymbol{\Lambda}_{L}\right] \boldsymbol{\psi}=\left[\left(\frac{\partial \varphi}{\partial t_{0}^{+}}\right)^{2}-\left(\frac{\partial \varphi}{\partial x_{n}^{L}}\right)^{2}\right] \boldsymbol{\psi}$.
\square A transformation to imaginary variables $y \rightarrow i . y$ leads (2.8) to a wave-like solution. Accordingly, with Lorentz-like condition (2.7), the wave-like solution reads:

$$
\begin{equation*}
-\frac{\partial^{2} \psi}{\partial t^{2}}+\frac{\partial^{2} \psi}{\partial x_{j}^{2}}=\left[\left(\frac{\partial \varphi}{\partial t_{0}^{+}}\right)^{2}-B_{e}\left(k_{n} \cdot \mu_{e}\right)_{e v e n}^{2}-\left(\frac{\partial \varphi}{\partial x_{n}^{L}}\right)^{2}\right] \psi ; \tag{2.14}
\end{equation*}
$$

where B_{e} is a calibration factor and μ_{e} is magnetic dipole moment of electron; its orientation is in correlation with spin vector \vec{s} and being P-even.

2- A duality of higher-dimensional gravitational equation (5)

- Re-scaling (2.14) with Planck constant and Compton length, then adopting the quantum operators, as a rule for transformation from the superluminal phase frame to the subluminal realistic frame: $\frac{\partial}{\partial t} \rightarrow i . \hbar \frac{\partial}{\partial t}=\widehat{E}$ and $\frac{\partial}{\partial x_{j}} \rightarrow-i . \hbar \frac{\partial}{\partial x_{j}}=\widehat{p}_{j} \rightarrow$ Equation (2.14) leads to a generalized KGF equation with a wave-like $\psi \equiv \psi_{w}$:

$$
\begin{equation*}
-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}}+\hbar^{2} \frac{\partial^{2} \psi}{\partial x_{j}{ }^{2}}-m^{2} \psi=0 ; \tag{2.15}
\end{equation*}
$$

Or in momentum representation $\left(\psi \rightarrow \psi \equiv \psi_{p}\right): \quad\left(E^{2}-p_{j}^{2}\right) \psi_{p}=m^{2} \psi_{p}$;
where : $\quad m^{2}=m_{0}^{2}-\delta m^{2}=m_{0}^{2}-m_{s}^{2}-m_{L}^{2}$
$>m_{0}=\hbar \Omega_{0}$ is the conventional rest mass, defined by $\Lambda_{T} ; m_{S}$ as a P-even contribution links with an external rotational curvature in 3D-space; $m_{L} \ll m_{S}$ is a tiny mass factor generated by $\boldsymbol{\Lambda}_{L}$, related to a P-odd effect of parity non-conservation (PNC).
\square For depolarized fields, applying (2.11) and ignoring Λ_{L}, i.e. $m \rightarrow m_{0}$, and $x_{j} \rightarrow x_{l}$, Equation (2.15) is identical to the traditional KGF equation (for spin-zero particles):

$$
\begin{equation*}
-\hbar^{2} \frac{\partial^{2} \psi}{\partial t^{2}}+\hbar^{2} \frac{\partial^{2} \psi}{\partial x_{l}{ }^{2}}-m_{0}{ }^{2} \psi=0 \tag{2.17}
\end{equation*}
$$

\rightarrow Generalized KGF Equation (2.15) serves as a QM motion equation of spinning particle, in particular, as the squared Dirac equation of electron.
\rightarrow The curved geometry (1.5) is more general \rightarrow embedding the flat 4D Minkowski space-time for accommodation of the SM of Quantum Field theories.

I Interpretation of QM in 4D space-time proves that the extended space-time can serve for accommodation of QM as well as SM of elementary particles.

In a duality to solution of Gravitational General Relativity Equation the 3D-time-like local geodesic solution (2.11-T):

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial t_{0}{ }^{2}}-\left(\frac{\partial \varphi}{\partial t_{0}}\right)^{2} \psi=\frac{\partial^{2} \psi}{\partial t_{0}{ }^{2}}-\Lambda_{T} \psi=0 . \tag{2.11-T}
\end{equation*}
$$

\rightarrow in a homogeneity and isotropic condition leads to Hubble-like expansion in the microscopic time-space and formulates a Microscopic Cosmological Model (MicroCoM), in analogue to the standard model (SM) of macroscopic cosmology.

- In MicroCoM the curvatures from 1D to 3D are formulated in a timelike micro-volume which are evolving toward the future along a linearly imitated Iongitudinal time axis dt.
\rightarrow The proposed MicroCoM is able to solve the mass hierarchy problem of elementary particles, in particular, of charged leptons by linking the time-like curvatures with proper masses.

3- Microscopic cosmological model (MicroCoM) for lepton hierarchy (1)

\square In 4D space-time assuming that all leptons, as a material points, are to involve in a common basic time-like cylindrical geodesic evolution with a internal 1D circular curvature of the time-like circle $S_{1}\left(\varphi^{+}\right)$, where φ^{+}is azimuth rotation in the plane $\left\{t_{1}, t_{2}\right\}$ about t_{3} and its sign "+" means a fixed time-like polarization from the past to the future;
\square Developing more generalized 3D spherical system, described by nautical angles $\left\{\varphi^{+}, \theta_{T}, \gamma_{T}\right\}$, where θ_{T} is a zenith in the plane $\left\{t_{1}, t_{3}\right\}$ and γ_{T} is another zenith in the orthogonal plane $\left\{t_{2}, t_{3}\right\}$.

Fig 3.1. Nautical angles to a time-like cylinder.

3- MicroCoM for lepton hierarchy (2)

\square For a n-hyper spherical surface: its intrinsic curvature C_{n} is a product of all its principle sectional curvatures (n extrinsic S_{1}):

$$
\begin{equation*}
C_{n}=C_{1} \cdot C_{n-1}=\psi^{-1} \cdot C_{n-1}=\psi^{-n} ; n=1,3 ; \tag{3.1}
\end{equation*}
$$

\rightarrow In according to general relativity, the energy density ρ_{n} correlates with its curvature and the density ρ_{1} of lightest lepton as:

$$
\begin{equation*}
\rho_{n}=\frac{\epsilon_{0}}{\psi^{n}}=\frac{\epsilon_{0}}{\psi} \frac{1}{\psi^{n-1}}=\rho_{1} \frac{1}{\psi^{n-1}} ; \tag{3.2}
\end{equation*}
$$

Where the factor ϵ_{0} is assumed a universal lepton energy factor (universal, because all 3 generations are involved in cylindrical condition and having the same lepton energy factor ϵ_{0}).

3- MicroCoM for lepton hierarchy (3)

$>$ Electron oscillating on a fixed line-segment of the time-like amplitude Φ, formulating 1D proper (or co-moving) "volume": $V_{1}\left(\varphi^{+}\right)=\Phi=\psi T$; where T is the 1 D time-like Lagrange radius.
$>$ For instance, Φ plays a role of the time-like microscopic Hubble radius and the wave function ψ plays a role of the time-like scale factor.
> The mass of electron defined by 1D Lagrange "volume" will be:

$$
\begin{equation*}
m_{1}=\rho_{1} V_{1}=\rho_{1} \Phi=\frac{\epsilon_{0}}{\psi} \psi T=\epsilon_{0} T=\epsilon_{0} W_{1} \tag{3.3}
\end{equation*}
$$

where W_{1} is the dimensionless Lagrange volume of electron.

Fig 3.2. Linearization of time axis of electron

For muon and tauon except the basic time-like cylindrical curved evolution φ^{+}, it needs to add ED curvatures made by evolution in simplest configurations of hyper-spherical "surfaces":
i/ $S_{1}\left(\theta_{T}\right)$ and $S_{1}\left(\gamma_{T}\right)$ or ii/ $S_{2}\left(\theta_{T}, \gamma_{T}\right)$.
Those curvatures are seen with fixed Φ from the cylindrical basis.

3- MicroCoM for lepton hierarchy (4)

\square The "co-moving volumes" $V_{n}(\Phi)$ with fixed $S_{n-1}(\Phi)$ are calculated as:

$$
\begin{equation*}
V_{n}(\Phi)=\int_{0}^{\Phi} S_{n-1}(v) d v=S_{n-1}(\Phi) \int_{0}^{\Phi} d v=S_{n-1} \Phi=V_{1} S_{n-1} \tag{3.4}
\end{equation*}
$$

(Φ is" fixed" from the 4 D -spacetime observation due to not being able to see the additional curvatures, instead of this, observing only their flat footprints at the same maximal level Φ).
> For homogeneity condition the simplest "2D-rotational co-moving volume" is:

$$
\begin{aligned}
& \boldsymbol{V}_{2}\left(\varphi^{+}, " \theta_{T}+\gamma_{T} "\right) \equiv \boldsymbol{V}_{2}\left(\varphi^{+}, \theta_{T}\right)+\boldsymbol{V}_{2}\left(\varphi^{+}, \gamma_{T}\right)= \\
& \quad=2 . \boldsymbol{V}_{2}=\boldsymbol{V}_{1}\left(\varphi^{+}\right)\left[S_{1}\left(\theta_{T}\right)+S_{1}\left(\gamma_{T}\right)\right]=\boldsymbol{\Phi} \cdot \mathbf{2} S_{1}=4 \pi \boldsymbol{\Phi}^{2}
\end{aligned}
$$

$>$ Accordingly, the lepton mass of 2D time-like curved particle (muon) is:

$$
\begin{equation*}
m_{2}=\rho_{2} V_{2}=\rho_{1} \frac{1}{\psi} \Phi \cdot 2 S_{1}=\frac{\epsilon_{0}}{\psi^{2}} 4 \pi \Phi^{2}=\epsilon_{0} 4 \pi T^{2}=\epsilon_{0} W_{2} ; \tag{3.5}
\end{equation*}
$$

> The next simplest 3D-rotational co-moving volume is:

$$
\boldsymbol{V}_{3}\left(\varphi^{+}, " \theta_{T} \otimes \gamma_{T} "\right)=\boldsymbol{V}_{1}\left(\varphi^{+}\right) \boldsymbol{S}_{2}\left(\theta_{T}, \gamma_{T}\right)=\boldsymbol{\Phi} \cdot \boldsymbol{S}_{2}=4 \pi \boldsymbol{\Phi}^{\mathbf{3}}
$$

$>$ Accordingly, the lepton mass of 3D time-like curved particle (tauon) is:

$$
\begin{equation*}
m_{3}=\rho_{3} V_{3}=\rho_{1} \frac{1}{\psi^{2}} \Phi \cdot S_{2}=\frac{\epsilon_{0}}{\psi^{3}} 4 \pi \Phi^{3}=\epsilon_{0} 4 \pi T^{3}=\epsilon_{0} W_{3} ; \tag{3.6}
\end{equation*}
$$

We could use the precise experimental data of electron and muon masses to determine ϵ_{0} and T in according to (3.3) and (3.5) as two free parameters, and then to calculate the tauon mass by (3.6), as a prediction.

3- MicroCoM for lepton hierarchy (5)

\square Using $T=16.454$, and the lepton energy factor $\epsilon_{0}=31.056 \mathrm{keV}$ calibrated to experimental values of m_{e} and m_{μ} we can predict the mass of tauon m_{τ} then to come to mass ratios of all three charged lepton generations:

$$
\begin{equation*}
m_{e}: m_{\mu}: m_{\tau}=m_{1}: m_{2}: m_{3}=1: 206.8: 3402.2=0.511: 105.7: 1738.5(\mathrm{MeV}) \tag{3.7}
\end{equation*}
$$

\rightarrow Let's compare with experimental: C.Patrignani et al., Particle Data Group,Chin.Phys. C40 (2016)
The result (as for the 1 rst order of approximation) is resumed in the Table 2:

\boldsymbol{n}-Lepton	1-electron	2-muon	3-tau lepton
Density, ρ_{n}	$\frac{\epsilon_{0}}{\psi}$	$\frac{\epsilon_{0}}{\psi^{2}}$	$\frac{\epsilon_{0}}{\psi^{3}}$
Comoving volume, \boldsymbol{V}_{n}	$\boldsymbol{\Phi}$	$4 \pi \boldsymbol{\Phi}^{2}$	$4 \pi \boldsymbol{\Phi}^{3}$
Formulas of mass, $\boldsymbol{m}_{\boldsymbol{n}}$	$\epsilon_{0} \boldsymbol{T}$	$\epsilon_{0} 4 \pi T^{2}$	$\epsilon_{0} 4 \pi T^{3}$
Calculated mass ratio $\boldsymbol{T} \approx \mathbf{1 6 . 4 5 4 ;}$ $\epsilon_{0}=31.056 ~$ keV	$\mathbf{1}$	$\mathbf{2 0 6 . 7 7}$	$\mathbf{3 4 0 2 . 1 8}$
Experimental leton mass, $\boldsymbol{m}_{\boldsymbol{n}}(\mathrm{MeV})$ Calculated lepton mass, $\boldsymbol{m}_{\boldsymbol{n}}(\mathrm{MeV})$	$\mathbf{0 . 5 1 1 0} \boldsymbol{*}$		

*) Same experimental values m_{e} and m_{μ} for calibration.
$>$ The deviation of prediction from the experimental tau-lepton mass is $-2,16 \%$.

4- 2nd approximation of tauon mass by minor curvatures (1)

\square Fine-tuning by contribution from minor curvatures C_{k} to the major curvature C_{n} where $k<n$ producing lepton mass m_{n}.
Namely: i/ S_{1} is added to S_{2} major curvature ; ii/ S_{1} and S_{2} are added to S_{3}.
\square Electron mass is rewritten in 2nd order approximation as:

$$
\begin{equation*}
m_{1}(2)=m_{1}\left(T_{2}\right)=\varepsilon_{2} \cdot T_{2} . \tag{4.1}
\end{equation*}
$$

\square Formula of muon mass is upgraded as:

$$
\begin{equation*}
m_{2}(2)=m_{2}\left(T_{2}\right)\left[1+\delta\left(\frac{c_{1}}{c_{2}}\right)\right] ; \tag{4.2}
\end{equation*}
$$

where $m_{2}\left(T_{2}\right)=\varepsilon_{2} \cdot 4 \pi T_{2}^{2} ; \delta\left(\frac{a}{b}\right)$ is a symbolized scale of the order of ratio $\frac{a}{b}$. As C_{1} and C_{2} are of different dimensions, they are re-normalized by their corresponding co-moving volumes: $\delta\left(\frac{C_{1}}{C_{2}}\right) \equiv \frac{\left[V_{1} \cdot C_{1}\right]}{\left[2 V_{2} \cdot C_{2}\right]}=\frac{W_{1}}{W_{2}}$, which leads to a ratio of dimensionless Lagrange volumes for comparison.

4- 2nd approximation of tauon mass by minor curvatures (2)

\square In general, C_{k} and C_{n} of different dimensions are re-normalized by corresponding dimensionless Lagrange volumes as follows:

$$
\begin{align*}
m_{2}(2)=m_{2}\left(T_{2}\right)\left[1+\frac{W_{1}}{W_{2}}\right]=m_{2}\left(T_{2}\right) & {\left[1+\frac{m_{1}\left(T_{2}\right)}{m_{2}\left(T_{2}\right)}\right]=} \\
& =m_{2}\left(T_{2}\right)+m_{1}\left(T_{2}\right) . \tag{4.3}
\end{align*}
$$

Tauon mass is corrected up to C_{2} as:

$$
\begin{equation*}
m_{3}(2)=m_{3}\left(T_{2}\right)\left[1+\delta\left(\frac{c_{1}}{c_{3}}\right)+\delta\left(\frac{c_{2}}{c_{3}}\right)\right] \tag{4.4}
\end{equation*}
$$

where in particular: $\quad \delta\left(\frac{C_{2}}{C_{3}}\right) \equiv \frac{\left[V_{2} \cdot C_{2}\right]}{\left[V_{3} \cdot C_{3}\right]}=\frac{1}{2} \frac{W_{2}}{W_{3}}$, which leads to:

$$
\begin{gather*}
m_{3}(2)=m_{3}\left(T_{2}\right)\left[1+\frac{m_{1}\left(T_{2}\right)}{m_{3}\left(T_{2}\right)}+\frac{1}{2} \frac{m_{2}\left(T_{2}\right)}{m_{3}\left(T_{2}\right)}\right]= \\
=m_{3}\left(T_{2}\right)+m_{1}\left(T_{2}\right)+\frac{1}{2} m_{2}\left(T_{2}\right) \tag{4.5}
\end{gather*}
$$

where: $m_{3}\left(T_{2}\right)=\varepsilon_{2} \cdot 4 \pi T_{2}^{3}$.

4- 2nd approximation of tauon mass by minor curvatures (3)
\square The factor of $\frac{1}{2} m_{2}\left(T_{2}\right)$ in Equation (4.5) of $m_{3}(2)$ implies that because the principal muon mass consists of double V_{2} co-moving volume as:

$$
m_{2}\left(T_{2}\right)=W_{1} \rho_{1}\left[S_{1}\left(\theta_{T}\right)+S_{1}\left(\gamma_{T}\right)\right] \sim C_{2} \cdot\left[V_{2}\left(\varphi^{+}, \theta_{T}\right)+V_{2}\left(\varphi^{+}, \gamma_{T}\right)\right]
$$

\rightarrow different factors of C_{2} contribution for muon and tauon mean that in Equation (4.3) C_{2} refers to muon mass (\sim double V_{2}), while in Equation (4.5) C_{2} relates to a correction to tauon mass, taking a single V_{2} only.
\rightarrow In the result, both corrected configurations of muon in (4.3) and of tauon in (4.5) contain equally a structural term $m_{1}\left(T_{2}\right)$ to meet the requirement that they are involved in the same basic time-like cylindrical geodesic evolution like electron.

4- 2nd approximation of tauon mass by minor curvatures (4)
\square Two new free parameters T_{2} and ε_{2} are determined based on experimental electron and muon masses as:

$$
\begin{gathered}
T_{2}=\frac{1}{4 \pi}\left(R_{21}-1\right)=16.37451965 \\
\varepsilon_{2}=31.20695794(\mathrm{keV})
\end{gathered}
$$

where R_{21} is the experimental mass ratio of muon to electron.
\square Now Equation (4.5) for calculation of tauon mass in the second approximation leads to: $m_{3}(2)=1774.82(\mathrm{MeV})$.
\rightarrow The uncertainty of this theoretical prediction is ignorable, because it depends only on experimental errors of electron and muon masses.
\rightarrow The calculation in the second order approximation deviates from the experimental tauon mass by 0.11% which is by 18.8 times better than the prediction in the first approximation (2.16\%).

5-3rd approximation by perturbative fine-tuning minor curvatures

\square The next infinite perturbative orders of minor curvatures C_{k} to the major curvature C_{n}.

Electron mass is modified as:

$$
\begin{equation*}
m_{1}(\infty)=m_{1}\left(T_{\infty}\right)=\varepsilon_{\infty} . T_{\infty} . \tag{5.1}
\end{equation*}
$$

\square Formula of muon mass is upgraded as:

$$
\begin{equation*}
m_{2}(\infty)=m_{2}\left(T_{\infty}\right)\left\langle 1+\sum_{q=1}^{\infty}\left[\delta\left(\frac{c_{1}}{c_{2}}\right)\right]^{q}\right\rangle=m_{2}\left(T_{\infty}\right) \sum_{q=0}^{\infty}\left[\delta\left(\frac{c_{1}}{c_{2}}\right)\right]^{q} ; \tag{5.2}
\end{equation*}
$$

\rightarrow After re-normalization it leads to:

$$
\begin{equation*}
m_{2}(\infty)=m_{2}\left(T_{\infty}\right) \sum_{q=0}^{\infty}\left[\frac{m_{1}\left(T_{\infty}\right)}{m_{2}\left(T_{\infty}\right)}\right]^{q}=m_{2}\left(T_{\infty}\right)+m_{1}\left(T_{\infty}\right) \frac{\rho_{21}}{\rho_{21}-1} ; \tag{5.3}
\end{equation*}
$$

where $m_{2}\left(T_{\infty}\right)=\varepsilon_{\infty} .4 \pi T_{\infty}^{2}$.

5-3rd approximation by perturbative fine-tuning minor curvatures (2)

The summations converge in infinity to finite quantities as:

$$
\sum_{q=0}^{\infty} \frac{1}{\rho_{i j}^{q}}=\frac{\rho_{i j}}{\rho_{i j}-1} ;
$$

where for $i>j$: $\rho_{i j}=\frac{m_{i}(T \infty)}{m_{j}(T \infty)}>1$
\square Tauon mass is corrected in infinity perturbative orders as:

$$
\begin{align*}
m_{3}(\infty)=m_{3}\left(T_{\infty}\right)+ & m_{1}\left(T_{\infty}\right) \sum_{p=0}^{\infty}\left[\delta\left(\frac{C_{1}}{C_{2}}\right)\right]^{p} \cdot \sum_{q=0}^{\infty}\left[\delta\left(\frac{C_{1}}{C_{3}}\right)\right]^{q}+ \\
& +\frac{1}{2} m_{2}\left(T_{\infty}\right) \sum_{q=0}^{\infty}\left[\delta\left(\frac{C_{2}}{C_{3}}\right)\right]^{q} ; \tag{5.5}
\end{align*}
$$

\rightarrow which leads to:

$$
\begin{gather*}
m_{3}(\infty)=m_{3}\left(T_{\infty}\right)+m_{1}\left(T_{\infty}\right) \frac{\rho_{21}}{\rho_{21}-1} * \frac{\rho_{31}}{\rho_{31}-1}+ \\
+\frac{1}{2} m_{2}\left(T_{\infty}\right) \frac{2 . \rho_{32}}{2 . \rho_{32}-1} ; \tag{5.6}
\end{gather*}
$$

where: $m_{3}\left(T_{\infty}\right)=\varepsilon_{\infty} .4 \pi T_{\infty}{ }^{3}$.

5-3rd approximation by perturbative fine-tuning minor curvatures (3)

\square Two new free parameters T_{2} and ε_{2} are determined based on experimental electron and muon masses as:
$T_{\infty}=\frac{1}{4 \pi} \cdot \rho_{21}=16.37413102, \quad\left\{\right.$ where $\rho_{21}=\mathrm{f}\left(R_{21}\right)$ is determined from the experimental ratio $\left.R_{21}=\frac{m_{2}(\text { exp })}{m_{1}(\text { exp })}=\frac{m_{2}(\infty)}{m_{1}(\infty)}=\rho_{21}+\frac{\rho_{21}}{\rho_{21}-1}\right\}$ and: $\varepsilon \infty=31.20769862(\mathrm{keV})$.

By Equation (5.6), in the third approximation: $m_{3}(\infty)=1776.40(\mathrm{MeV})$. \rightarrow This theoretical prediction has also ignorable uncertainty due to high precision of the experimental electron and muon masses.
\square The fine-tuning approximation in infinite perturbation is 83.4 times better than the prediction in the first approximation.
\square In accordance with the notion of the curved 3D-time, it is noticed that all ratios $\rho_{i j}$ are enough large which make all summations $\sum_{q=0}^{\infty} \frac{1}{\rho_{i j}{ }^{q}}$ fast converged at powers of a perturbative order not higher than the major curvature order in each formula, i.e. $q \leq n \leq 3$.
\square Similar to STM theory (Wesson et al.), our time-space symmetrical (TSS) model shows that 4D-Quantum Mechanics originates from the Higher-dimensional General Relativity:

TSS geometrical dynamical approach clarifies QM phenomena (meaning of quantum operators, derivation of KGF equation, Heisenberg inequalities, wave-particle duality, origin of Bohm quantum potential, Schrodinger Zitterbewegung)...
\rightarrow The extended space-time can accommodate the 4D-SM of QFT.
\rightarrow also serves a basis for a Microscopic Cosmological model: Hubble expansion mechanism is applied in microscopic 3D-time subspace that leads to different time-like configurations with hyper-spherical curvatures.
\rightarrow Applying the model with a maximal time-like dimension (3D) : By extending cylindrical curvature to additional 2D and 3D time-like hyper-spherical configurations:

- mass ratios of charged leptons are estimated satisfactory.

6- Discussion (2)

The only quantitative prediction of tauon mass has been achieved by Koide empirical formula based on electron and muon masses:

$$
m_{e}+m_{\mu}+m_{\tau}=\frac{2}{3}\left(\sqrt{m_{e}}+\sqrt{m_{\mu}}+\sqrt{m_{\tau}}\right)^{2}
$$

\rightarrow which leads to the quantity $m_{\tau}($ Koide $)=1776.97 \mathrm{MeV}$ being in an excellent agreement within $1 . \sigma$ with experimental tauon mass

$$
m_{\tau}(\exp)=1776.86 \pm 0.12 \mathrm{MeV} .
$$

\square Some geometrical interpretation of Koide formula was proposed by Kocik (arXiv: $1201.2067 v 1$ [physics.gen-ph]) where mass correlations are expressed through Descartes-like circles or with their corresponding squared curvatures.
\rightarrow However, no more physics could be developed after this point.
\square Sumino assumed the family gauge symmetry $U(3)$ with new gauge bosons at 10E2-10E3 TeV scale to maintain the Koide formula, which due to breaking leads to the SM as an effective field (EFT).
\rightarrow The problem: it seems to require higher symmetries at very high energies, which takes time for the next accelerator generation.

6- Discussion (3)

In opposite, our TSS based MicroCoM demonstrates an explicit physical interpretation, which serves a solution to the problem of charged lepton mass hierarchy :
$>$ the 3D of time-like sub-space is a constraint of the number of lepton generations (exacting number 3);
$>$ the basic common time-like cylindrical evolution ensures the causality by one-directional evolution (toward the future) and together with two universal free parameters (T_{∞} and ε_{∞}) explains why three lepton generations have similar properties.
\square A theoretical calculation by TSS-MicroCoM in perturbative approximation leads to prediction :

$$
m_{3}(\infty)=1776.40 \mathrm{MeV} ;
$$

\rightarrow which is a fairly passable consistency with experimental tauon mass :

$$
m_{\tau}(\exp)=1776.86 \pm 0.12 \mathrm{MeV} .
$$

\rightarrow From another perspective, as the deviation of calculation is still 3.83 σ, It needs further research for any new hyper-fine adjustment of the present theoretical calculation.

The Literature Pagoda in Hanoi
Thank You for Attention!

Appendix 1: Why Bi-Cylindrical Geometry ?
\square The Bi-cylindrical Formalism is implemented in the following steps:
$>$ Formulation of bi-cylindrical geometry of $\{3 T-3 X\}$ time-space symmetry where the two 3D sub-spaces are orthonormal to each other.
> Vacuum solutions of general relativity equation in such geometry
$>$ Transformation of the bi-cylindrical variables in to the functions $\psi=\psi(y)$ and $\varphi=\varphi(y)$ of $y \equiv\left\{t_{0}, t_{3}, x_{n}, x_{3}\right\}$ in $\{3 T-3 X\}$ time-space symmetrical geometry.
\rightarrow Most convenient functions are exponential for imitation of both Hubblelike expansion and quantum waves. Those functions are naturally separable for their variables.
A Higgs-like interaction for violating the time-space symmetry:

- A Lorentz-like condition is introduced for cancelation of all longitudinal fluctuations, which conserves the linear translational equation (CLT) in transformation from a higher dimensional (6D-) geometry to a lower (4D-) realistic geometry.
- Accordingly, the separated geodesic conditions in 3D sub-spaces ensure that due to a symmetry-breaking, their scales are able to renormalized independently following an invariant formalism.
\rightarrow Non-zero mass terms appeared.

Appendix 2 - Why Dual Solution ?

\square Duality of the solution of 6D-Bi-Cylindrical GR Equation :
$>$ Bi-cylindrical geodesic equation (2.13);
> Wave-like solution (2.14):
\rightarrow Dual sub-solutions describe the same physical substance.
\square Serving for Quantum Mechanical Interpretations:
$>$ From Wave-like Equation \rightarrow a generalized QM equation is derived: KGF;
$>$ From separated 3D-local geodesic conditions (in 3T and 3X):
Heisenberg inequalities are derived.
> Qualitative explanation of QM phenomena: i/ Physical meaning of the QM energy-momentum operators; ii/ Wave-particle duality; iii/ Bohm quantum potential; iv/ Schrodinger ZBW (Zitterbewegung).
\square Then, for Formation of a microscopic cosmological model with a cylindrical basis from 3D-local geodesic equation in $3 T \rightarrow$ the Hubble-like expansion is in homogeneous and isotropic conditions.

Appendix-3: Calculation of curvature tensors

\square Christoffel symbols: by applying (9) following are found valid:

$$
\begin{gathered}
\Gamma_{\varphi \varphi}^{\psi}=-\frac{g^{\psi} \psi}{2} \frac{\partial g_{\varphi \varphi}}{\partial \psi}=-\frac{1}{H_{y}} \frac{\partial \psi}{\partial y} ; \quad \Gamma_{\psi \varphi}^{\varphi}=\Gamma_{\varphi \psi}^{\varphi}=\frac{g^{\varphi \varphi}}{2} \frac{\partial g_{\varphi \varphi}}{\partial \psi}=\frac{1}{\psi^{2} H_{y}} \frac{\partial \psi}{\partial y} \\
\Gamma_{\varphi \varphi}^{3}=-\frac{g^{33}}{2} \frac{\partial g_{\varphi \varphi}}{\partial y_{3}}=- \\
\frac{1}{2} \frac{\partial\left(\psi^{2}\right)}{\partial y_{3}}=-\psi \frac{\partial \psi}{\partial y_{3}} ; \quad \Gamma_{3 \varphi}^{\varphi}=\Gamma_{\varphi 3}^{\varphi}=\frac{g^{\varphi \varphi}}{2} \frac{\partial g_{\varphi \varphi}}{\partial y_{3}}= \\
\frac{1}{2 \psi^{2}} \frac{\partial\left(\psi^{2}\right)}{\partial y_{3}}=\frac{1}{\psi} \frac{\partial \psi}{\partial y_{3}} .
\end{gathered}
$$

\square Ricci tensors for the bi-3D cylindrical geometry:

$$
\begin{gathered}
R_{\psi \psi}=-\frac{\partial \Gamma_{\varphi \psi}^{\varphi}}{\partial y}\left[\frac{\partial y}{\partial \psi}\right]-\Gamma_{\psi \varphi}^{\varphi} \Gamma_{\Psi \varphi}^{\varphi}=-\frac{1}{\psi^{3} H_{y}{ }^{2}} \frac{\partial^{2} \psi}{\partial y^{2}}+\frac{1}{\psi^{4} H_{y}^{2}}\left(\frac{\partial \psi}{\partial y}\right)^{2} ; \\
R_{33}=-\frac{\partial \Gamma_{\varphi 3}^{\varphi}}{\partial y_{3}}-\Gamma_{3 \varphi}^{\varphi} \Gamma_{3 \varphi}^{\varphi}=-\frac{1}{\psi} \frac{\partial^{2} \psi}{\partial y_{3}{ }^{2}} ;
\end{gathered}
$$

$$
R_{\varphi \varphi}=\frac{\partial \Gamma_{\varphi \varphi}^{\psi}}{\partial y}\left[\frac{\partial y}{\partial \psi}\right]+\frac{\partial \Gamma_{\varphi \varphi}^{3}}{\partial y_{3}}-\Gamma_{\varphi \psi}^{\varphi} \Gamma_{\varphi \varphi}^{\psi}-\Gamma_{\varphi 3}^{\varphi} \Gamma_{\varphi \varphi}^{3}=-\frac{1}{\psi H_{y}^{2}} \frac{\partial^{2} \psi}{\partial y^{2}}+\frac{1}{\psi^{2} H_{y}^{2}}\left(\frac{\partial \psi}{\partial y}\right)^{2}-\psi \frac{\partial^{2} \psi}{\partial y_{3}{ }^{2}} .
$$

Obviously, $R=g^{i m} R_{i m}=\delta_{i}^{m} R_{i}^{m}=-\frac{2}{\psi^{3} H_{y}{ }^{2}} \frac{\partial^{2} \psi}{\partial y^{2}}+\frac{2}{\psi^{4} H_{y}{ }^{2}}\left(\frac{\partial \psi}{\partial y}\right)^{2}-\frac{2}{\psi} \frac{\partial^{2} \psi}{\partial y_{3}{ }^{2}}$.
Its space-time representation reads: $\quad R=\delta_{\gamma}^{\sigma} R_{\gamma}^{\sigma}(X)-\delta_{\alpha}^{\beta} R_{\alpha}^{\beta}(T)$.

Appendix-4: Outputs from the dual solutions of GR (1)

The meaning of quantum energy momentum operators:
Mathematical transformation from the geodesic equation (2.13) with an exponential solution to a wave-like solution (2.14) is performed by transformation of variables: $t \rightarrow-i t$ and $x_{j} \rightarrow i x_{j}$ in similar to that of quantum dynamic operators. This is not only a mathematical formalism, but also a significant physical operation, equivalent to transformation from external to internal investigation. Indeed, for the phase $\varphi=\Omega t-k_{j} x_{j}=$ const in the internal phase continuum: the phase velocity is superluminal, i.e. $v_{\text {phase }}=\frac{d x_{j}}{d t}=\frac{\Omega}{k_{j}}>c$. It is equivalent to converting the role of space \leftrightarrow time in the internal superluminal frame comparing with the external subluminal space-time.

- Wave-particle duality:

Subjecting the same microscopic substance:
i/ the monotonic exponential solution describes motion/evolution of a material point, as a localized particle; while
ii/ the wave-like solution transforming into QM equation (KGF) describes the motion/evolution of same particle, but as a wave-like substance.

Appendix-4: Outputs from the dual solutions of GR (2)
Based on 3D-local geodesic deviation acceleration conditions (2.11-T) and (2.11-X), we can understand some important QM phenomena:
\square Bohm quantum Potential:

$$
\begin{equation*}
\left(\frac{\partial S}{\partial x_{n}}\right)^{2}=B_{e}\left(\hbar \cdot \boldsymbol{k}_{n} \cdot \mu_{e}\right)_{\text {even }}^{2}=\frac{\hbar^{2}}{\psi} \frac{\partial^{2} \psi}{\partial x_{n}{ }^{2}}=-2 m Q_{B} ; \tag{2.11-B}
\end{equation*}
$$

which is proportional to Bohm's quantum potential Q_{B}.
\square Schrödinger's Zitterbewegung:
> The existence of the spin term in Generalized QM Klein-Gordon-Fock equation (2.15) is reminiscent of ZBW of free electron.
\rightarrow When we describe a linear translation of the freely moving particle by Equation (2.17), the ZBW term is almost compensated by the geodesic condition (2.11-X) except a tiny P-odd term (However the latter is hard to observe).

A. Coordinate-momentum inequality:

$>$ The local geodesic condition (2.10) leads to: $\frac{1}{\psi} d\left(\frac{\partial \psi}{\partial x_{n}}\right) \cdot d x_{n}=d \varphi^{2} \geq 0$;

$$
\begin{equation*}
\rightarrow|\Delta p| \cdot|\Delta x| \geq\left|\Delta p_{n}\right| \cdot\left|\Delta x_{n}\right|>\psi^{-1}\left|d\left(i . \hbar \frac{\partial \psi}{\partial x_{n}}\right)\right| \cdot\left|d x_{n}\right|=|i . \hbar| \cdot d \varphi^{2} \geq 0 \tag{H1}
\end{equation*}
$$

Accepting the conditions: i/ Quantization of azimuth: $\varphi=n .2 \pi ;$
ii/ For Poisson/Gaussian distribution of quantum statistics: $<\varphi>_{\min }=2 \pi$ and $d \varphi \approx$ $\sigma_{\varphi}=\sqrt{2 \pi}=$ standard deviation.
\rightarrow Then, from (H2): $\quad|\Delta p| \cdot|\Delta x|>2 \pi \hbar$.

B. Time-energy inequality:

Following 3D-time local geodesic condition (2.10) : $\frac{1}{\psi} d\left(\frac{\partial \psi}{\partial t_{0}}\right) \cdot d t_{0}=d \varphi^{2} \geq 0$;
$\rightarrow|\Delta E| \cdot|\Delta t| \geq\left|\Delta E_{0}\right| \cdot\left|\Delta t_{0}\right|>\psi^{-1}\left|d\left(i . \hbar \frac{\partial \psi}{\partial t_{0}}\right)\right| \cdot\left|d t_{0}\right|=|i . \hbar| \cdot d \varphi^{2} \geq 0 ;$
\rightarrow With the same conditions (i) and (ii): $|\Delta E| \cdot|\Delta t|>2 \pi \hbar$.
The inequalities (H3) and (H6) show that the QM indeterminism takes origin from the curvatures of space and time.

Appendix-5: Heisenberg indeterminism (2)

\square For a local geodesic in closed 3D-time:

$$
\frac{1}{\psi} d\left(\frac{\partial \psi}{\partial t_{0}}\right) \cdot d t_{0}=d \varphi^{2} \geq 0 ;
$$

\square Multiplying both sides on the quantum scale unit i. \hbar, and turning to finite differentials we get the time-energy indetermination:

$$
\begin{gathered}
|\Delta E| \cdot|\Delta t| \geq\left|\Delta E_{0}\right| \cdot\left|\Delta t_{0}\right|>\left|d E_{0}\right| \cdot\left|d t_{0}\right|= \\
=\psi^{-1}\left|d\left(E_{0} \cdot \psi\right) d t_{0}\right|=\psi^{-1}\left|d\left(i . \hbar \frac{\partial \psi}{\partial t_{0}}\right) d t_{0}\right|= \\
=|i . \hbar| \cdot d \varphi^{2} \geq 0 ;
\end{gathered}
$$

where due to involving in the internal curvature $E_{0}(n)=m_{0}(n)=\frac{A_{n}}{\psi^{n}}$ then, in average:

$$
\left.\langle | d\left(E_{0} \cdot \psi\right)\left\rangle=\langle | \psi d\left(E_{0}\right)+E_{0} d(\psi)\right|\right\rangle=\langle | \psi d E_{0}\left| \pm \frac{1}{n}\right|\left(\psi d E_{0}\right)| \rangle=\left|\psi d E_{0}\right| .
$$

\square Similarly we can get the space-momentum indetermination.

Appendix-6: A scenario similar to the Standard cosmological model (A hypothesis)

During the Big-Bang inflation, we suggest the following scenario of MicroCoM, similar to the Standard Cosmological model of the Universe:

The micro-scale factor ψ increases exponentially (time-like Hubble constant $\boldsymbol{H}_{T}=\sqrt{\Lambda_{T}}=7.764^{*} 10^{20} \mathrm{sec}^{-1}$ and the instant of inflation $\Delta t_{1}=1.926 * 10^{-20} \mathrm{sec}$ after 1 sec from the Big-Bang).
For the next time-life of the Universe $=13.7{ }^{*} 10^{9}$ years, based on the idea of time-space symmetry, it is assumed for 3D-time (exactly as in 3D-space): ψ $\sim t^{1 / 2}$ for radiation dominant era and $\psi \sim t^{2 / 3}$ for matter dominant era. In a result, the time-like Lagrange radius T decreases from $T_{0}=\frac{\Phi}{\psi_{0}}=1$ for Δt_{1} then steps up to the present value $T=\frac{\Phi}{\psi} \approx 16.5$.
For leptons born after the inflation era, assuming following anthropic principle (very qualitatively) that the Hubble radius of any quantum fluctuations should adapt the contemporary value Φ, while the scale factor ψ being governed by a contemporary chaotic Higgs-like potential in such a way, that is to meet the contemporary time-like Lagrange radius T (for today, $T=16.5$).

