

Oscillations into hidden photons and direct searches

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

XIVth Rencontres du Vietnam 'Windows on the Universe'

ICISE, Quy Nhon, Vietnam, 09.08.2018

Dmitry Gorbunov (INR)

Oscillations to hidden photons

Talk is based on and aimed at stimulating

- D.G., A.Makarov, I.Timiryasov, arXiv:1411.4007
- M.Danilov, S.Demidov, D.G., arXiv:1804.10777
- S.Demidov, S.Gninenko, D.G., arXiv:1809.xxxxx
- . . .
- TEXONO, DANSS,...
- NA64, invisible and visible modes
- SHiP v_{τ} -detector..., when it is fixed
- DUNE Near Detector..., when it is fixed
- exps at Fermilab ?, T2K ?, ...

Talk is based on and aimed at stimulating

- D.G., A.Makarov, I.Timiryasov, arXiv:1411.4007
- M.Danilov, S.Demidov, D.G., arXiv:1804.10777
- S.Demidov, S.Gninenko, D.G., arXiv:1809.xxxxx
- . . .
- TEXONO, DANSS,...
- NA64, invisible and visible modes
- SHiP v_{τ} -detector..., when it is fixed
- DUNE Near Detector..., when it is fixed
- exps at Fermilab ?, T2K ?, ...

In short

 A new (massive) vector field X_μ singlet with respect to SM gauge group

 $\epsilon X_{\mu
u}F^{\mu
u}$

- X_{μ} can be emitted and absorbed in the Compton process
- For light X_{μ} , that is $M_X \ll 1$ MeV, only missing/recoil *E* are signatures
- In a relativistic case, $M_X \ll E_X$, nothing depends on mass M_X

In short

 A new (massive) vector field X_μ singlet with respect to SM gauge group

 $\varepsilon X_{\mu\nu}F^{\mu\nu}$

- X_{μ} can be emitted and absorbed in the Compton process
- For light X_{μ} , that is $M_X \ll 1$ MeV, only missing/recoil *E* are signatures
- In a relativistic case, $M_X \ll E_X$, nothing depends on mass M_X

Results based on Compton scattering

M N

The sensitivity DOES depend on M_X

Dmitry Gorbunov (INR)

Oscillations to hidden photons

Widely accepted statements: phenomenology

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

(Nobel Prize 2015)

Widely accepted statements: phenomenology

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe

(Nobel Prize 2015)

Widely accepted statements: theory

- Standard Model nicely explains almost all results of particle physics experiments
- We definitely need New particle Physics
 - neutrino oscillations
 - baryon asymmetry
 - dark matter
 - inflation-like stage in the early Universe
- New Heavy particle contribution to the Higgs boson mass lifts it up but miraculously $m_h \sim E_{EW}$

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Guesswork: a logically possible option

- All the new particles are at (below) *E_{EW}* then quantum contributions to *m_h* ~ *E_{EW}* are safe
- Why so far no evidences for such light New Particles ?
- They are only feebly coupled to the Standard Model
 - they are SM gauge singlets
 - new Yukawa-type couplings ?
 - portal-like couplings ?

(not a GUT)

Three Portals to the hidden World

Renormalizable interaction including SM field and new (hypothetical) fields singlets with respect to the SM gauge group

Attractive feature:

couplings are insensitive to energy in c.m.f., hence low energy experiments (intensity frontier) are favorable

• Scalar portal: SM Higgs doublet *H* and hidden scalar *S*

the simplest dark matter

$$\mathscr{L}_{\text{scalar portal}} = -\beta H^{\dagger} H S^{\dagger} S$$

• Spinor portal: SM lepton doublet *L*, Higgs congugate field $\tilde{H} = \varepsilon H^*$ and hidden fermion *N* sterile neutrino !!

$$\mathscr{L}_{spinor \, portal} = -y \overline{L} \widetilde{H} N$$

 Vector portal: SM gauge field of U(1)_Y and gauge hidden field of abelian group U(1)' hidden photon

$$\mathscr{L}_{\text{vector portal}} = -\frac{\varepsilon}{2} \, B^{U(1)_{Y}}_{\mu\nu} \, B^{U(1)'}_{\mu\nu}$$

Dmitry Gorbunov (INR)

Oscillations to hidden photons

NA64

Massive vectors (paraphotons)

Massive vectors: decays are under control

Massive vectors: production by protons

• decays of π^0, η^0 and $\rho^{\pm}, \rho^0, \omega$

$$\mathsf{Br}_{\pi^0\to\mathcal{A}'\gamma}\simeq 2\varepsilon^2\left(1-\frac{m_{\mathcal{A}'}^2}{m_{\pi^0}^2}\right)^3\mathsf{Br}_{\pi^0\to\gamma\gamma}$$

 proton bremsstrahlung concervatively corrected by the Dirac (electric) form factor of proton

$$F_1 = \frac{1}{\left(1 + \frac{q^2}{m_D^2}\right)^2} \rightarrow \frac{1}{m_{\mathcal{A}'}^4}$$

with Dirac mass squared $m_D^2 = 12/r_D^2$ and the Dirac radius $r_D \approx 0.8$ fm

• quark bremsstrahlung

1411.4007

12/28

N

High Intensity frontier: photon sources

- modern proton beams: JPARC, Fermilab, CERN SPS presently operating or under construction 10²⁰ – 10²¹ PoT per year T2K, DUNE, SHiP,...
- Nuclear power plants, thermal power *ThP* ~ GW measurements of photon spectrum (*E*_γ > 200 keV) from FRJ-1 reactor core

$$\frac{dN_\gamma}{dE_\gamma}\approx 0.6\times 10^{21}\times \frac{ThP}{GW}\times e^{-\frac{E\gamma}{0.91MeV}}\,,$$

TEXONO, NEOS, DANSS,... Actually all neutrino oscillation experimen

H.Bechteler et al (1984)

light shining through the wall

reactor: $\gamma \rightarrow \gamma'$ detector: $\gamma' + e^- \rightarrow e^-$ mimics $\bar{\nu} + e^- \rightarrow e^-$

Dmitry Gorbunov (INR)

Oscillations to hidden photons

NR

High Intensity frontier: photon sources

- modern proton beams: JPARC, Fermilab, CERN SPS presently operating or under construction 10²⁰ – 10²¹ PoT per year T2K, DUNE, SHiP,...
- Nuclear power plants, thermal power *ThP* ~ GW measurements of photon spectrum (*E*_γ > 200 keV) from FRJ-1 reactor core

$$\frac{dN_{\gamma}}{dE_{\gamma}}\approx 0.6\times 10^{21}\times \frac{ThP}{GW}\times e^{-\frac{E_{\gamma}}{0.91\,\text{MeV}}}\,,$$

TEXONO, NEOS, DANSS,... Actually all neutrino oscillation experiments

H.Bechteler et al (1984)

light shining through the wall

reactor: $\gamma \rightarrow \gamma'$ detector: $\gamma' + e^- \rightarrow e^-$ mimics $\bar{\nu} + e^- \rightarrow e^-$

Results based on Compton scattering

How do we describe very light particles which mix to each other ? ...

say, neutrino...?

... but oscillations, of course !

How do we describe very light particles which mix to each other ? ...

say, neutrino...?

... but oscillations, of course !

Dmitry Gorbunov (INR)

Oscillations to hidden photons 09.08.2018, XIVth Rd Vietnam 15 / 28

How do we describe very light particles which mix to each other ? ...

say, neutrino...?

... but oscillations, of course !

How do we describe very light particles which mix to each other ? ...

say, neutrino...?

... but oscillations, of course !

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{4}X_{\mu\nu}^2 - \frac{\varepsilon}{2}X_{\mu\nu}F^{\mu\nu} + \frac{m_X^2}{2}X_{\mu}^2 - eA_{\mu}j_{em}^{\mu}$$

One can make kinetic term diagonal by

$$X_{\mu}
ightarrow X_{\mu} + arepsilon A_{\mu}$$

$$\mathscr{L} = -\frac{1}{4}F_{\mu\nu}^2 - \frac{1}{4}X_{\mu\nu}^2 + \frac{m_{\chi}^2}{2}\left(X_{\mu} + \varepsilon A_{\mu}\right)^2 - eA_{\mu}j_{em}^{\mu} + \mathscr{O}(\varepsilon^2)$$

keeping X_{μ} sterile with respect to $U(1)_{em}$

and similar to the neutrino having mixing in the mass matrix

vacuum oscillations: $P(A \rightarrow X) = (2\varepsilon)^2 \sin^2\left(\frac{m_X^2 L}{4E}\right)$

Mass-state separation : coherence loss in vacuum

photons come from decaying fission fragments $\tau = 10^{-12} - 10^{-11} \text{ s}$ initial size: $\sigma \sim 1/\tau \sim 0.03 - 0.3 \text{ cm}$ shorter than oscillation length

$$L_{osc} \approx 2.5\,\mathrm{cm} imes rac{E_{\gamma}}{1\,\mathrm{MeV}} rac{(10\,\mathrm{eV})^2}{m_{\chi}^2}$$

N

Hidden photons from reactor: matter effect

• photons 'get mass' in matter

in water $m_{\gamma} \sim 20 \,\mathrm{eV}$

hence
$$m_X^2
ightarrow \Delta m^2 \equiv \sqrt{(m_X^2 - m_\gamma^2)^2 + 4 arepsilon^2 m_X^4}$$

always exceed $m_{\gamma} \sim 20 \text{ eV}$ (except resonance $m_X = m_{\gamma}$) • photons rescatter and 'get absorbed' in matter

in water for E = 1 - 10 MeV we have $1/\Gamma \simeq 10 \text{ cm}$

 $\bullet\,$ the net result at distances $\gg 1/\Gamma$

$$P = \varepsilon^2 \times \frac{m_X^4}{\left(\Delta m^2\right)^2 + E_\gamma^2 \Gamma^2}$$

Oscillations at various situations

In the source (reactor core) of size $\gg 1/\Gamma$

$$P = \varepsilon^{2} \times \frac{m_{X}^{4}}{\left(\Delta m^{2}\right)^{2} + E_{\gamma}^{2}\Gamma^{2}} = \frac{\left(\varepsilon m_{X}^{2}\right)^{2}}{\left(m_{X}^{2} - m_{\gamma}^{2}\right)^{2} + E_{\gamma}^{2}\Gamma^{2}}$$

low absorption $E_{\gamma}\Gamma \approx 2 \times \left(\frac{E_{\gamma}}{1 \text{ MeV}}\right) \left(\frac{10 \text{ cm}}{1/\Gamma}\right) \text{ eV}^{2} \ll m_{\gamma}^{2} \sim (20 \text{ eV})^{2}$

•
$$m_X \gg m_\gamma \Longrightarrow P = \varepsilon^2$$

- $m_X \ll m_\gamma \Longrightarrow P = \varepsilon^2 \times (m_X/m_\gamma)^4$
- resonance $m_X \approx 10 \, {\rm eV} \Longrightarrow P = 10^5 \varepsilon^2$

In the detector (e.g. prompt e^-) of size $\gg 1/\Gamma$

$$P = \varepsilon^2 \times \frac{m_X^4}{\left(\Delta m^2\right)^2}$$

Limits from TEXONO: $N_s \propto \varepsilon^2 \times \varepsilon^2$

1804.10777

ЯN ИК

Resonance region... $m_X = m_\gamma$

Kuo-Sheng Nuclear Power Station : Reactor Building

both reactor core and detector are highly inhomogeneous

Requires a good knowledge of the source internal structure Can be done by the Neutrino Collaborations

Accelerator experiments: NA64, invisible mode, $\propto \epsilon^2$

TOP VIEW

Share where where

Accelerator experiments: NA64, invisible mode, $\propto \varepsilon^2$

'missed' secondary photons of

$$E_\gamma$$
 \sim 50 $-$ 100 GeV

$$L_{osc} pprox 25\,{
m cm} imes rac{E_{\gamma}}{100\,{
m GeV}} rac{\left(1\,{
m keV}
ight)^2}{m_X^2}$$

• lead dump:

 $m_{\gamma} \simeq 60 \, \mathrm{eV} \qquad 1/\Gamma = 1 \, \mathrm{cm}$

high absorption

$$E_{\gamma}\Gamma \simeq \left(rac{E_{\gamma}}{100 \text{ GeV}}
ight) \left(rac{1 \text{ cm}}{1/\Gamma}
ight) (1 \text{ keV})^2 \gg m_{\gamma}^2 \sim (60 \text{ eV})^2$$

Consequently

- $m_X \gg 1 \text{ keV} \Longrightarrow P = \varepsilon^2$
- $m_X \ll 1 \text{ keV} \Longrightarrow P = \varepsilon^2 \times (m_X / 1 \text{ keV})^4$
- no resonance at $m_X = m_\gamma$

N

NA64 sensitivity to invisible vectors

Dmitry Gorbunov (INR)

Oscillations to hidden photons

09.08.2018, XIVth Rd Vietnam 25 / 28

Exploiting resonance region with NA64

$$m_{\gamma}^2 > \Gamma E_{\gamma}$$

Other material? No way...

$$m_{\gamma}^2 \propto n$$
, $\Gamma \propto n$

need lower energies $E_{\gamma} \sim 1 \text{ GeV}$

N

Developing projects: SHiP, ... DUNE ?

 $\begin{array}{ll} \mbox{SHiP: protons of E} = 400 \, \mbox{GeV on target (W-Mo) produce pions:} \\ E_\gamma \lesssim 10 \, \mbox{GeV} & m_\gamma \simeq 100 \, \mbox{eV}, & 1/\Gamma \simeq 0.5 \, \mbox{cm} \\ \mbox{look for a hit in the v_τ-detector,} & N_s \propto \varepsilon^2 \times \varepsilon^2 \end{array}$

• non-resonance case: high absoption

$$L_{osc} \approx 5 \,\mathrm{cm} \times \frac{E_{\gamma}}{10 \,\mathrm{GeV}} \frac{(700 \,\mathrm{eV})^2}{m_X^2}$$
$$E_{\gamma} \Gamma \approx \left(\frac{E_{\gamma}}{10 \,\mathrm{GeV}}\right) \left(\frac{0.5 \,\mathrm{cm}}{1/\Gamma}\right) (700 \,\mathrm{eV})^2 \gg m_{\gamma}^2 \sim (100 \,\mathrm{eV})^2$$
critical mass is $m_X = 700 \,\mathrm{eV}$

• resonance case: take soft neutral pions, $E_{\pi} \sim 0.5 \, {\rm GeV}$

$$E_{\gamma}\Gamma \approx \left(\frac{E_{\gamma}}{250\;\text{MeV}}\right) \left(\frac{0.5\,\text{cm}}{1/\Gamma}\right)\;(100\,\text{eV})^2 \simeq m_{\gamma}^2 \sim (100\,\text{eV})^2$$

Summary

 Oscillations generically suppress production of light hidden photons

$$P = \varepsilon^2 \longrightarrow P = \varepsilon^2 \times \left(\frac{m_X}{m_{crit}}\right)^4$$

where

$$m_{crit} = MAX \left[m_{\gamma}, \ E_{\gamma} \Gamma
ight]$$

so the sensitivity to light vectors is lost

• One can check for resonance amplification, when ...

$$m_X^2=m_\gamma^2\gtrsim E_\gamma$$
Г

• Extra bonus: secondary photons...

Backup slides