Status and Prospects of Short Baseline Neutrino Experiments

Georgia Karagiorgi Columbia University

25th Anniversary of Rencontres du Vietnam on "Windows of the Universe"

ICISE, Quy Nhon, Vietnam

Neutrino oscillations in a nutshell

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \left\langle v_{\beta} \left| v_{\alpha}(t) \right\rangle \right|^{2} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin^{2} \left[1.27 \Delta m_{ij}^{2} L/E \right] \right.$$
$$\left. + 2 \sum_{i>j} \operatorname{Im} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin \left[2.54 \Delta m_{ij}^{2} L/E \right],$$
$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2}$$

2

Neutrino oscillations in a nutshell

Neutrino oscillations in a nutshell

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_\mu \\ \mathbf{v}_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3}e^{i\delta} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2015 to

Takaaki Kajita Super-Kamiokande Collaboration University of Tokyo, Kashiwa, Japan

Arthur B. McDonald Sudbury Neutrino Observatory Collaboration Queen's University, Kingston, Canada

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

Not the full picture?

Not the full picture?

"long- and medium-baseline"

Neutrino oscillations at "short baselines"

$$P(\mathbf{v}_{\alpha} \rightarrow \mathbf{v}_{\beta}) = \left| \left\langle \mathbf{v}_{\beta} \left| \mathbf{v}_{\alpha}(t) \right\rangle \right|^{2} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin^{2} \left[1.27 \Delta m_{i j}^{2} L/E \right] \right.$$
$$\left. + 2 \sum_{i>j} \operatorname{Im} \left\{ U_{\alpha i}^{*} U_{\beta i} U_{\alpha j} U_{\beta j}^{*} \right\} \sin \left[2.54 \Delta m_{i j}^{2} L/E \right],$$
$$\Delta m_{i j}^{2} = m_{i}^{2} - m_{j}^{2}$$

P is maximal when (1.27 $\Delta m_{ij}^2 L/E$) ~ $\pi/2$

• For
$$\Delta m_{21}^2 = 7.37E-5 \text{ eV}^2$$
,
L ~ 10-200 km for typical energies E ~ 1 MeV - 10 MeV

• For
$$\Delta m_{31}^2 = 2.55E-3 \text{ eV}^2$$
,
L ~ 1 km - 5,000km for E ~ 1 MeV - 10 GeV

• At short-baselines:

 $L \sim 1 \text{ m} - 1 \text{ km for}$ $E \sim 1 \text{ MeV} - 10 \text{ GeV}$

 \rightarrow sensitive to much higher Δm_{ii}^2 !

[C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995); 81,1774(1998); A.Aguilar et al., Phys. Rev. D64, 112007(2001)]

Anomalous signature: requires at least four neutrinos to accommodate a third, independent Δm^2 !

MiniBooNE beam run periods and v_e appearance results:

[Latest MiniBooNE $\nu_{\rm e}$ appearance results: arXiv:1805.12028]

Total neutrino mode excess (12.84E20 POT):

381.2 +/- 85.2 excess events (**4.5** σ) Best-fit χ^2 -probability = 15%

Combined with antineutrino mode:

460.5 +/- 95.8 excess events (**4.8** σ) Best-fit χ^2 -probability = 20%

Observed excesses in neutrino and antineutrino mode have become more consistent relative to past results.

Neutrino and antineutrino fits are consistent with LSND allowed regions and high- Δm^2 oscillation interpretation

"Reactor Anomaly"

Measured \overline{v}_{e} flux from reactors is 3.5% (~3 σ) lower than expected from predictions \rightarrow oscillation of \overline{v}_{e} into \overline{v}_{s} ?

[Mueller et al. 1101.2663, Huber 1106.0687]

"Reactor Anomaly"

Predicting reactor $\overline{\nu}_{e}$ fluxes:

- Use measured β spectra from ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission
- Convert to \overline{v}_{e} spectrum
- For single β decay, $E_v = Q E_e$
- Thousands of decay branches, many not precisely known
- Use (incomplete) information from nuclear data tables...
- ... complemented by a fit to effective decay branches

Anomaly has been investigated as a **flux misinterpretation**: e.g. Do we see an isotope-dependent deficit? (Sterile neutrinos would lead to isotope-independent deficit.)

[e.g., Daya Bay PRL 118, 251801 (2017)]

Daya Bay isotopic evolution measurements: Necessity for further flux corrections.

But, **no clear data preference** for "fit to free fluxes" over "fixed fluxes with oscillations"

[Hernandez et al., arXiv:1709.04294]

Anomaly has been investigated as a **flux misinterpretation**: e.g. Do we see an isotope-dependent deficit? (Sterile neutrinos would lead to isotope-independent deficit.)

[e.g., Daya Bay PRL 118, 251801 (2017)]

5ND SHOPT WE

Additional neutrino mass states? → 3 active + N sterile neutrinos

 ν_e disappearance:

$$P(v_{e} \rightarrow v_{e}) = 1 - \sin^{2} 2\vartheta_{ee} \sin^{2}(1.27\Delta m^{2}L/E)$$

$$4|U_{e4}|^{2}(1 - |U_{e4}|^{2})$$

REACTO

 v_e disappearance:

 $P(v_e \rightarrow v_e) = 1 - \sin^2 2\vartheta_{ee} \sin^2(1.27\Delta m^2 L/E)$

 v_{μ} disappearance:

 ν_{e} disappearance:

 $P(v_e \rightarrow v_e) = 1 - \sin^2 2\vartheta_{ee} \sin^2(1.27\Delta m^2 L/E)$

 ν_{μ} disappearance:

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 2\vartheta_{\mu\mu} \sin^2(1.27\Delta m^2 L/E)$

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance:

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\vartheta_{\mu e} \sin^{2}(1.27\Delta m^{2}L/E)$ $\downarrow \quad 4|U_{e4}|^{2}|U_{\mu 4}|^{2}$

<u>Note</u>: $\sin^2 2\theta_{\mu e} \approx \frac{1}{4} \sin^2 2\theta_{\mu\mu} \sin^2 2\theta_{ee}$

Global fits

$(\bar{\nu}_{\mu})$ disappearance	$(\overline{\mathbf{v}}_{\mu}^{)} \rightarrow (\overline{\mathbf{v}}_{e}^{)}$ appearance	${\bf v}_{e}^{(-)}$ disappearance
CDHS CCFR84 SuperK/K2K (atm) MiniBooNE (dis) MINOS-CC MINOS-NC	MiniBooNE v MiniBooNE v LSND KARMEN NOMAD NUMI-MB	Bugey, Chooz KARMEN/LSND (xsec) Gallium
		U _{µ4} ²
		<i>U</i> _{e4} ²
[See A. Diaz et al, ICHEP 2018; Conrad et al, Adv.High Energy Phys. 2013 (2013) 163897; GK et al, Phys.Rev. D80 (2009) 073001; similar analyses by Maltonii, Schwetz, Kopp and others as well]		$(m_4)^2$ $m^2 (eV^2)$
Also, recently: IceCube, OPERA, and other MINOS+ of [See, e.g. G. Collin et al., PRL 117, 221	analyses 801 (2016)]	$(m_3)^2$ λm^2 ν_3
		$(m_2)^2 \longrightarrow 32^2$ ν_2 ν_2
		$(m_1)^2 \underbrace{\downarrow}_{\text{lightest}}^{21} v_1 \underbrace{\downarrow}_{\text{V}_{\text{S}}}^{1}$

Global fits

When combined with all other available experimental constraints, MiniBooNE, LSND and Reactor SBL data **seem to indicate a preference for a** (3+1) signal

BUT, results are still inconclusive, due to **tension with** v_{μ} **disappearance searches** at short baselines ($\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$ implies non-zero v_{μ} disappearance, but none has been seen!)

Global fits

BUT, results are still inconclusive, due to **tension with** v_{μ} **disappearance searches** at short baselines ($\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$ implies non-zero v_{μ} disappearance, but none has been seen!)

What's next?

- Better statistical treatment of data in global fits
- Alternate models: 3+2, 3+3, non-standard interactions, heavy sterile neutrino decay, ...
- More sensitive experimental tests
 - Reactor-based: SoLiD, DANSS, NEOS, STEREO, PROSPECT
 - Accelerator-based: SBN
 - Also searches at long-baseline experiment near detectors and (highenergy) atmospheric neutrino experiments

A trio of liquid argon time projection chamber (LArTPC) detectors

Aim: A definitive test of MiniBooNE/LSND sterile neutrino oscillation interpretation.

SBND: Under construction; expected to begin operations in early 2020 **MicroBooNE:** Operating detector, taking data since Oct. 2015! **ICARUS:** Under installation; expected to begin operations in 2019

LArTPC's: provide high-resolution $2D \rightarrow 3D$ imaging of charged particles produced in neutrino interactions in liquid argon.

µBooNE

ν

Neutrino events with γ are differentiated on the basis of:

- 1. Detached shower vertex from neutrino interaction vertex
- Larger dE/dx deposited at the beginning of the shower (2 MIP vs 1 MIP)

Typical e/ γ separation: ~90% \rightarrow Ideal technology for v_e measurements

SBN v_e appearance channel search: (3+1)

[SBN Proposal 2015]

SBN v_e appearance channel search: (3+1)

In addition to ν_e appearance...

SBN can probe multiple oscillation channels! (Shown here independently)

[D. Cianci et al., Phys. Rev. D 96, 055001 (2017)]

- v_e app/dis and v_{μ} disap search: 85% coverage of 99%CL allowed phase-space at 5 σ
- Overall sensitivity to 3+1 greatly enhanced when combining multiple oscillation channels in the fit!
- Simultaneous search for ν_e and ν_μ disappearance without consideration of ν_e disappearance overestimates sensitivity.

DANSS at Kalinin Nuclear Power Plant[•]

- Solid-state scintillator detector
- Compact, segmented, movable (10.7-12.7 m) detector
- Data taking since April 2016; analysis data in Oct. 26
- Preliminary results at Neutrino 2018

NEOS at Hanbit-5 Nuclear Reactor in Korea:

- Liquid scintillator detector
- Compact, homogeneous, 24m from reactor core
- Data taking during Aug. 2015-May 2016
- First results at Neutrino 2018

DANSS at Kalinin Nuclear Power Plant:

- Solid-state scintillator detector
- Compact, segmented, movable (10.7-12.7 m) detector
- Data taking since April 2016; analysis data in Oct. 26
- Preliminary results at Neutrino 2018

NEOS at Hanbit-5 Nuclear Reactor in Korea:

- Liquid scintillator detector

PROSPECT at High Flux Isotope Reactor in US

- 6Li-loaded liquid scintillator
- Compact, segmented, movable
 (7-9 m) detector
- Data taking since March 2018
- First results in June 2018 [arXiv: 1806.02784]

PROSPECT at High Flux Isotope Reactor: **NEOS** at Hanbit-5 Nuclear Reactor in Korea:

No significant signals observed by PROSPECT or NEOS...

DANSS at Kalinin Nuclear Power Plant:

Multiple phenomenology groups are in the process of including new reactor shortbaseline results into global fits to sterile neutrino oscillations. (Maltoni & Schwetz, Conrad & Shaevitz, GK and others).

Summary

- Since the mid nineties (and earlier, with calibration source measurements for radiochemical experiments), we have been amassing anomalous excess/deficits of v_e at L/E ~ 1m/MeV, from v_u and v_e sources
 - LSND, MiniBooNE, reactor neutrino measurements at short baselines
 - Require additional, high-∆m² to interpret as two-neutrino oscillation → sterile neutrino(s)?
 - But in conflict with null v_{μ} disappearance searches at short baselines
- Community is resorting to: improving fits, considering alternative interpretations, and deploying new experimental tests with unprecedented sensitivity:
 - SBN accelerator-based program at Fermilab coming online by 2020
 - Several experiments at very short baselines near reactors, with new results this summer from DANSS, STEREO, PROSPECT, and NEOS, and highly anticipated results coming soon from SoLiD.
- Stay tuned!

Thank you!