Greenland Telescope (GLT): Imaging the Black Hole Shadow

Satoki Matsushita (ASIAA; Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) & the GLT Project Team (ASIAA & SAO)

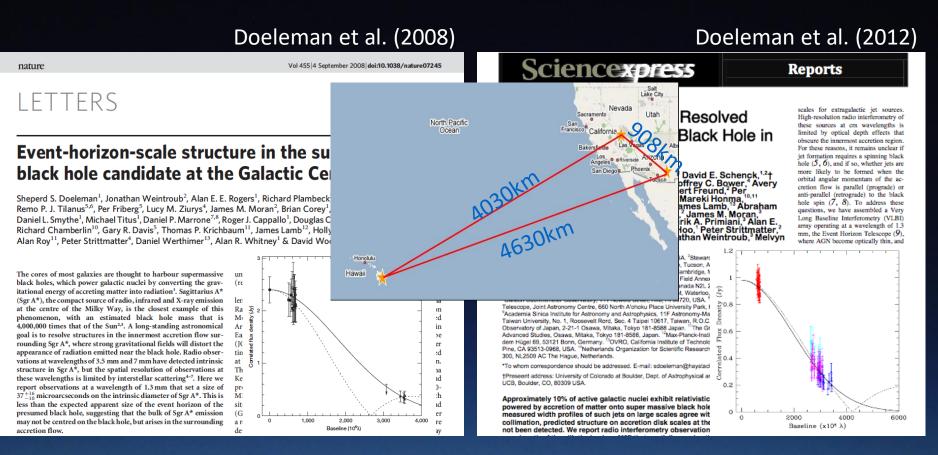
Primary Science Target: Direct Imaging of the Shadow of Black Holes

Sizes of Black Holes

	Shadow Size (µasec)	Mass (10 ⁶ Mo)	Distance (Mpc)
Sgr A*	50	4.1 +- 0.6	0.008
M87	39	6600 +- 400	17.0
M31	18	180 +- 80	0.80
M60	12	2100 +- 600	16.5
NGC 5128 (Cen A)	7	310 +- 30	4.5

Note: Here we assume $R_{shadow} \sim 5 \times R_{sch}$

Gebhardt et al. (2011)


Spatial Resolution

- Spatial resolution goes high with shorter wavelength (or higher frequency) and bigger telescope (or longer baseline):
 - Resolution ~ λ /D
 - λ : Wavelength
 - D: Diameter of telescope (or baseline length)
- Spatial resolutions of the optical/infrared telescopes:
 - Hubble Space Telescope (HST): 0.04" (40 milliarcsec)
 - James Webb Space Telescope (JWST): 0.03" (30 milliarcsec)
 - VLT Interferometer (VLTI): 0.002" (2 milliarcsec)

 \Rightarrow Too large to image black holes, whose sizes are μ arcsec scale.

⇒ Submillimeter Interferometry !!!

Feasibility of Submillimeter VLBI

Sgr A* Size ≈ 40 µas (≈ 4 r_{sch})

Vir A* (M 87) Size ≈ 40 µas (≈ 5 r_{sch})

Why Greenland?

Submillimeter Telescopes in the World

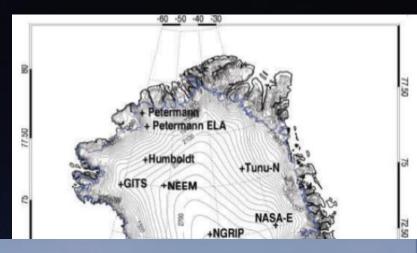
- Atacama Large Millimeter Array (ALMA), Chile
- ALMA Pathfinder Experiment (APEX), Chile
- James Clerk Maxwell Telescope (JCMT), Hawaii
- Large Millimeter Telescope (LMT), Mexico
- IRAM 30-meter Telescope, Spain
- South Pole Telescope (SPT), South Pole
- Submillimeter Array (SMA), Hawaii
- Submillimeter Telescope (SMT), Arizona

M. Johnson/SAO

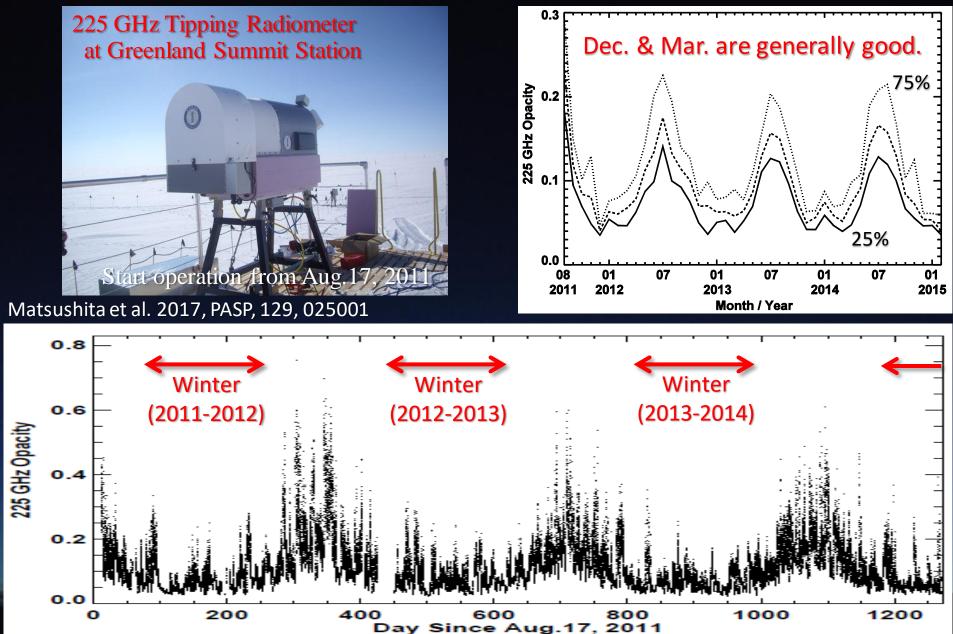
Telescope Site Selection

- Site selection criteria:
 - Precipitable water vapor (PWV) is low.
 - Longest possible baselines with existing submm telescopes.
 (i.e., site with polyisting submm telescopes)
 - (i.e., site with no existing submm telescopes)
 - Overlapping sky coverage with ALMA.
 - ALMA has the largest aperture size. (corresponds to 85 m single-dish telescope)
 - Interferometric baseline sensitivity $\propto \sqrt{A_1 A_2}$
 - Accessible.

Telescope Site Selection

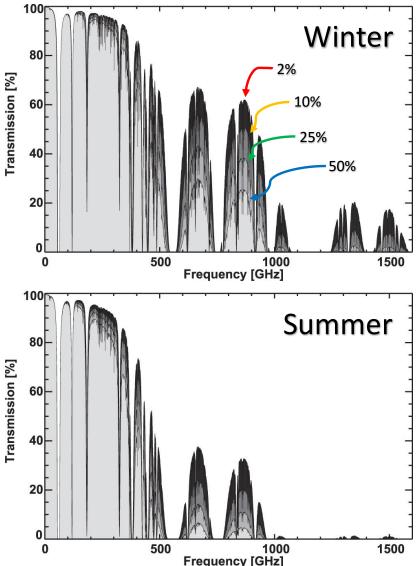

Winter in the North, Summer in the South Winter in the South, Summer in the North

NASA Aqua & Terra/MODIS Satellite Data. PWV > 3 mm is displayed as red color.


- No obvious site in the Southern Hemisphere, except Northern Chile and Antarctica.
- South Alaska (Mt. McKinley or Mt. Denali): Difficult to access.
- Tibet: opposite side of ALMA, so impossible to have baseline with it.
- Greenland: Similar condition as South Pole. It is also possible to have baselines with ALMA/SMA/JCMT.

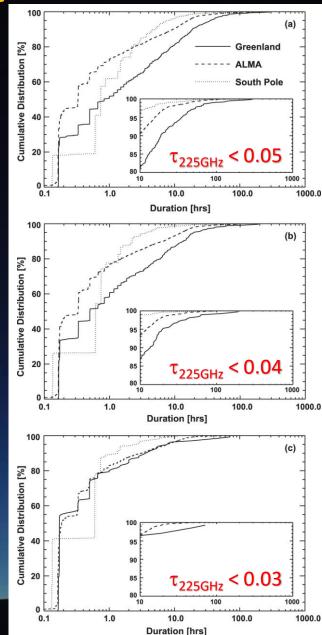
Greenland - Summit Station

- Established/operated by US NSF & Greenland Government.
 - Established on 1989.
 - Atmospheric and weather researches are mainly ongoing.
 - N72.60°, W38.42°. Altitude: 3210m.
 - Summer: 45 people, Winter: 5 people (3 months shift)
 - Possible to carry things by flights with C-130, etc., or through land.



225 GHz Opacity at the Summit of Greenland

Atmospheric Transmission


- Using the radiative transfer program "am" (Paine 2016), we estimated the atmospheric transmission spectra.
- Observable time:
 - Winter
 - < 450 GHz: Little atmospheric attenuation $(\tau < 0.5)$ most of the winter time.
 - 450 ~ 1000 GHz: Half of the time with τ < 1.2.
 - THz windows: 10% of the winter time will have an atmospheric transmission > 10%.
 - Summer
 - < 380 GHz: Little atmospheric attenuation $(\tau < 0.5)$ most of the summer time.
 - 450 GHz window: More than half of the time with $\tau < 1$.
 - 450 1000 GHz: 25% of the summer time will have an atmospheric transmission > 10%.
 - THz windows: Hopeless in summer.

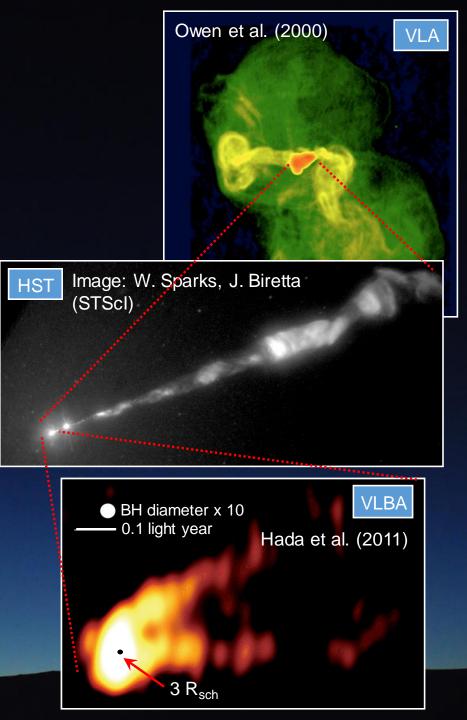
Matsushita et al. 2017, PASP, 129, 025001

Duration of Low Opacity Conditions

- Calculated time durations of opacity conditions continuously lower than certain values.
- Duration with $\tau < 0.05 \& \tau < 0.04$:
 - Greenland Summit (solid line) has a long tail toward the long duration of > 100 hrs.
 - ALMA (dashed line) always exhibits higher cumulative distributions, and reaches 100% around several x 10 hrs.
 - South Pole (dotted line) shows the steepest distribution, and reaches 100% around a few x 10 hrs, much shorter than the other 2 sites.
- Duration with τ < 0.03:
 - Very similar distribution between Greenland and ALMA.
 - But Greenland Summit shows a long tail up to several x 10 hrs.
 - South Pole is much shorter, only up to 10 hr.
- Greenland is suitable for the observations that need very stable opacity conditions.

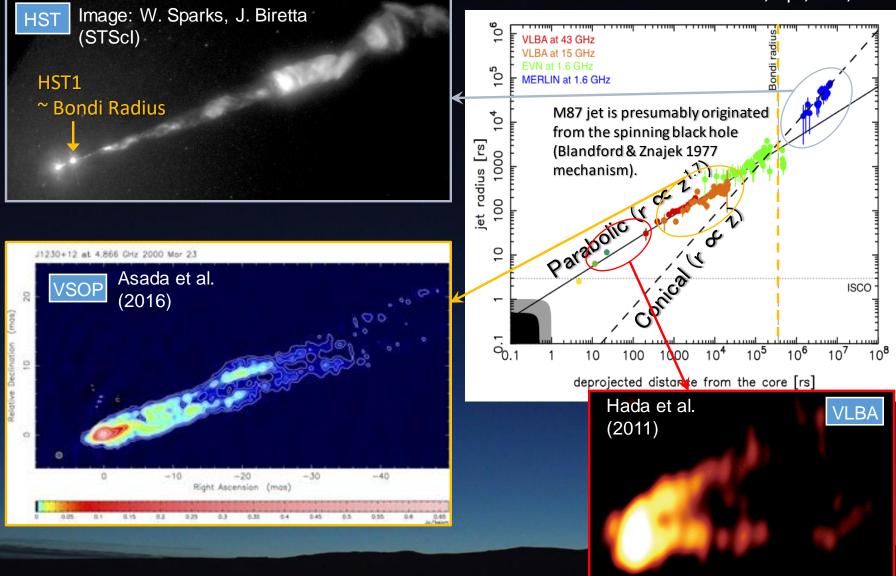
Imaging Supermassive Black Holes

Sizes of Black Holes


	Shadow Size (µasec)	Mass (10 ⁶ Mo)	Distance (Mpc)
Sgr A*	50	4.1 +- 0.6	0.008
M87	39	6600 +- 400	17.0
M31	18	180 +- 80	0.80
M60	12	2100 +- 600	16.5
NGC 5128 (Cen A)	7	310 +- 30	4.5

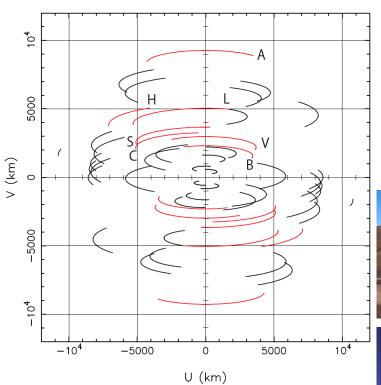
Note: Here we assume $R_{shadow} \sim 5 \times R_{sch}$

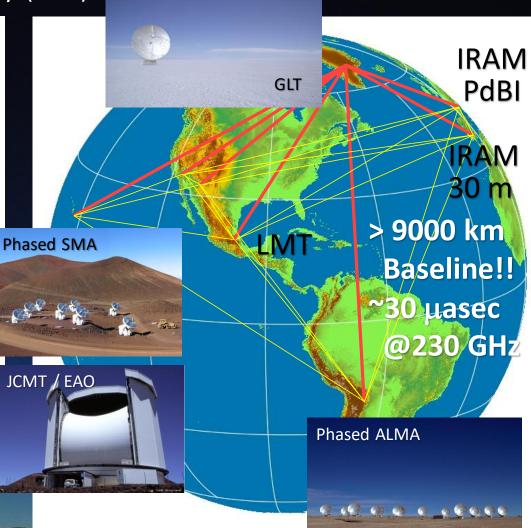
Gebhardt et al. (2011)


M87

- Heavy BH mass compared to Sgr A*
 ⇒ Comparable angular size with Sgr A*.
- Heavy BH mass.
 ⇒ Rotation period of the accretion disk is >> 1 day.
 ⇒ Beneficial for imaging.
- Prominent Jets. Beneficial for understanding jet emitting mechanism.

Collimation of M87 Jet


Asada & Nakamura 2012, ApJ, 745, 28 Nakamura & Asada 2013, ApJ, 775, 118


Expected uv Coverage with GLT

Very Long Baseline Interferometry (VLBI)

UV Coverage for M87

uv coverage for M 87 with GLT, ALMA, SMA/JCMT, LMT, SMT, CARMA, IRAM 30m, and PdBI. Baselines with GLT are shown in red.

Telescope Re-Assembly at Thule

GLT Antenna

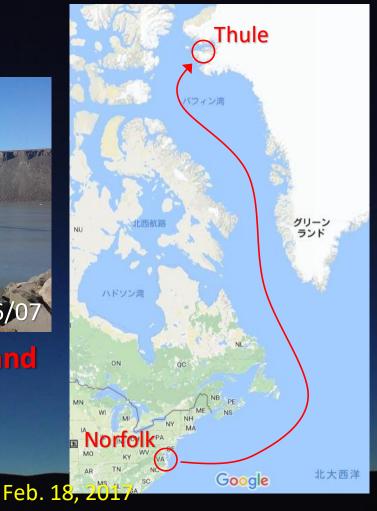
- ALMA-NA Prototype 12m Antenna (Vertex)
- NSF awarded to ASIAA / SAO (2011/04).
- Antenna performance inspection done (2011

 2012), since it did not move since 2006, and worked well.

GLT Antenna Disassembly

• Totally disassembled at VLA site.

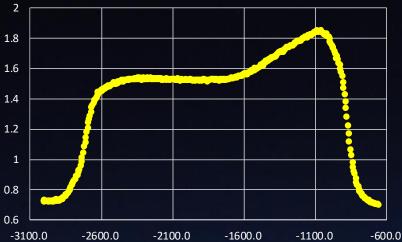
(2012/12)



GLT Antenna Shipping & Reassembly

Oct. 2, 2016 ade for Extreme Weather

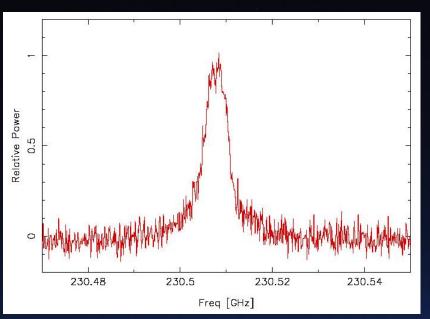
Finishing Antenna Re-Assembly



Commissioning and Science Operation

Greenland Telescope (GLT)

Greenland Telescope (GLT) Astronomical First Light!!!

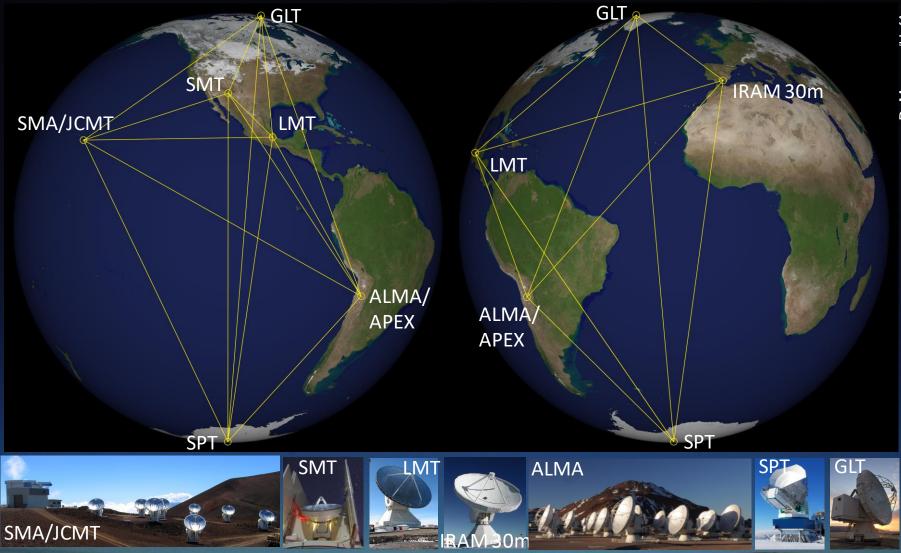

Moon at Christmas (Size matched with the above scan) Azimuth scan of Moon with the GLT 86 GHz Receiver (observed frequency = 94.5 GHz) and with the Continuum Detector.

Detected on 2017/12/25 19:11 Local Thule Time (Christmas Gift!)

Kevin J.-Y. Koay & Satoki Matsushita with GLT tracking Moon (above left of Kevin's head)

Greenland Telescope (GLT) First Spectrum!!!

CO(J=2-1) line from Orion-KL with the GLT 230 GHz Receiver (observed frequency = 230.538 GHz) with the ASIAA VLBI R2DBE and the Mark 6 recorder (auto-correlation).

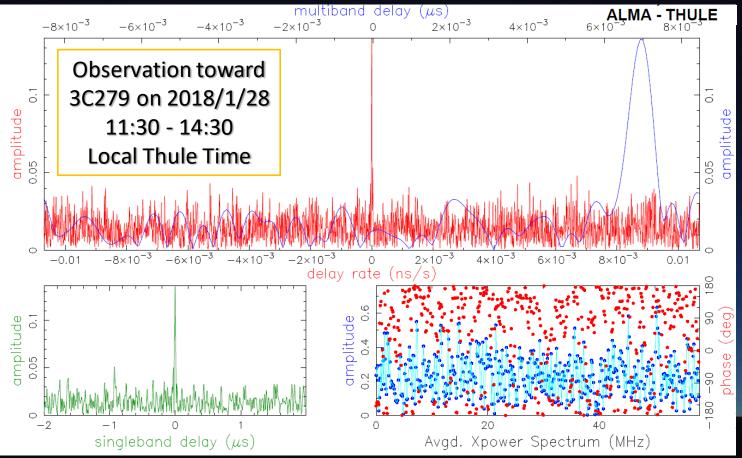

Detected on 2018/1/10 20:12 Local Thule Time

Keiichi Asada, Shoko Koyama, Kevin J.-Y. Koay & Satoki Matsushita at the GLT Control Room

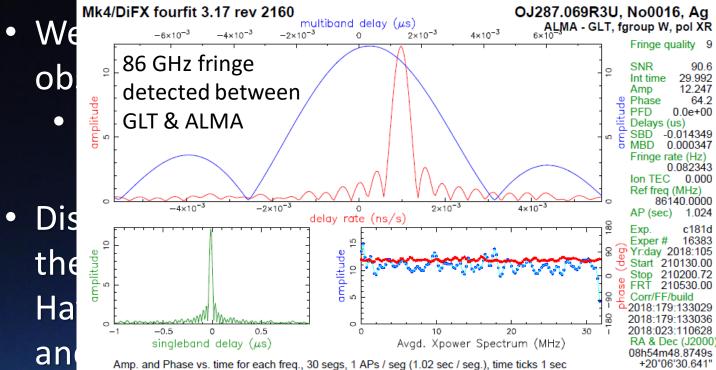
Event Horizon Telescope (EHT)

Joined Event Horizon Telescope (EHT) 230 GHz VLBI Dress Rehearsal!!!

- We joined the Event Horizon Telescope (EHT) 230 GHz VLBI Dress Rehearsal.
- ALMA & South Pole Telescope (SPT) have also joined under good weather.
- JCMT & IRAM 30 m could not join due to bad weather.
- We observed 3C279 with GLT & SPT (EL = 9° @ GLT & EL = 6° @ SPT).
- Disk modules have been sent out to the correlation site (MIT Haystack Observatory).


Performed on 2018/1/28 11:30 - 14:30 Local Thule Time

Ming-Tang Chen, Nimesh Patel, Kuan-Yu Liu, Keiichi Asada, & Hiroaki Nishioka at the GLT Control Room



230 GHz VLBI First Fringe with ALMA!!!

- We got the first fringe with ALMA at 230 GHz!!!
- The data have been taken at the EHT Dress Rehearsal, namely within 2 months after the commissioning started.

Joined the Event Horizon Telescope (EHT) 230 GHz VLBI!!

 We also successfully joined the GMVA VLBI observations at 86 GHz.

2018/4/20, 21,

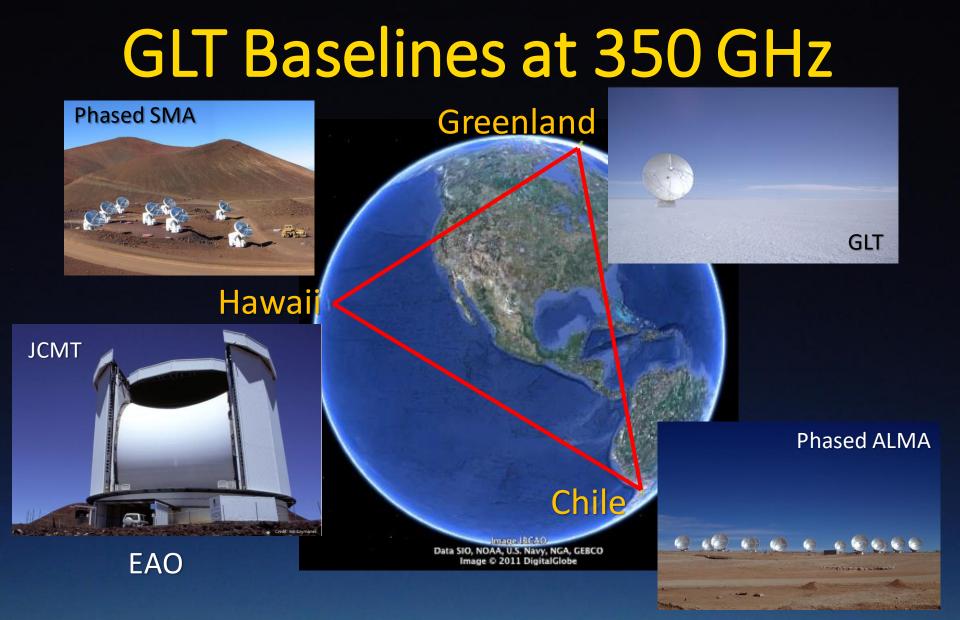
23, 24, 26, & 27

Nimesh Patel,

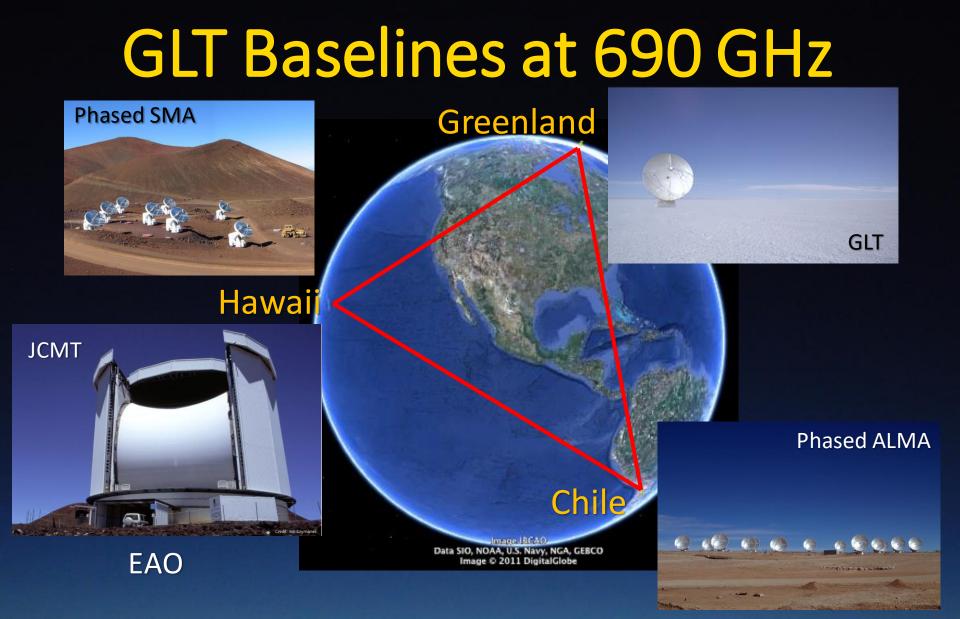
Keiichi Asada,

& Chen-Yu Yu

in front of GLT


Hiroaki Nishioka,

Future Plan


Plan

- Test and operation at Thule, including VLBI (2017-2020).
- Transport antenna across ice sheet (2020-2021).
- First light at the Summit Station (2021-2022).

Baselines are 9,000 km long, and the resolution reaches 20 µas at 345 GHz.

Baselines are 9,000 km long, and the resolution reaches 10 µas at 690 GHz.

Sizes of Black Holes

	Shadow Size (µasec)	Mass (10 ⁶ Mo)	Distance (Mpc)
Sgr A*	50	4.1 +- 0.6	0.008
M87	39	6600 +- 400	17.0
M31	18	180 +- 80	0.80
M60	12	2100 +- 600	16.5
NGC 5128 (Cen A)	7	310 +- 30	4.5

Note: Here we assume $R_{shadow} \sim 5 \times R_{sch}$

Gebhardt et al. (2011)

Greenland Telescope (GLT) Summary

- Primary Science Target: Direct Imaging of the Shadow of Black Holes with submm VLBI.
- Telescope re-assemble finished at Thule, Greenland.
- Testing and science observations at Thule are ongoing.
- Plan to move to the Greenland Summit in 2020-21.
- Science observations at the Greenland Summit will start in 2021-22.