

Neutrinoless double beta decay

Stefan Schönert | TU München

25th Anniversary of the Rencontres du Vietnam Windows to the Universe

6-11 August 2018 ICISE, Quy Nhon, Vietnam

- Creation of matter without balancing emission of anti-matter (Vissani)
- (A,Z)→(A,Z+2) + 2e⁻
- Lepton number violating process (ΔL=2)
- Majorana neutrinos generate $0\nu\beta\beta$
- Majorana neutrinos would explain small neutrino masses (See-Saw)
- Key ingredient for explanation of matter-antimatter asymmetry
- In general: $\Delta L=2$ (BSM) operators can generate $0\nu\beta\beta$
- Discovery of $0\nu\beta\beta$ always imply new

Current best sensitivity: $T_{1/2} \sim 10^{26} \text{ yr}$

Next generation: $T_{1/2} \sim 10^{28}$ yr (x 100 increase)

Challenge: ~1 decay per 10⁴ Mol and year

 $()\nu BB$

Standard paradigm: exchange of light Majorana neutrinos

$$\left\langle m_{ee} \right\rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$$

PMNS-matrix

 ν -mass

Any 0vββ decay process induces a transition, ie. effective $\overline{\mathcal{V}_e} - \mathcal{V}_e$ an Majorana mass term Schechter, Valle Phys.Rev. D25 (1982)

Numerical values tiny; other leading contributions to neutrino mass must exist Duerr, Merle, Lindner: JHEP 1106 (2011)

Complementarity of LHC and 0vßß decay

500

"eV = TeV"

S. Schönert | TUM Double Beta Decay 25th anniversary Rencontres du Vietnam Ramsey-Musolf et al., 1508.0444

Double beta decay isotopes

$\mathbf{Q}_{\mathbf{\beta}\mathbf{\beta}}$
4262.96(84) keV
2039.04(16) keV
2997.9(3) keV
3356.097(86) keV
3034.40(17) keV
2813.50(13) keV
2526.97(23) keV
2457.83(37) keV
3371.38(20) keV

$2\nu\beta\beta$ and $0\nu\beta\beta$ decay

0vββ decay and neutrino mass

Expected decay rate:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M^{0\nu}|^2 \langle m_{ee} \rangle^2$$

Phase space integral Nuclear matrix element $\langle m_{ee} \rangle = \left| \sum_{i} U_{ei}^2 m_i \right|$ Effective neutrino mass

 $U_{_{
m oi}}$ Elements of (complex) PMNS mixing matrix

Experimental signatures:

- e peak at Q_{ββ}
- two electrons from vertex Discovery would imply:
- lepton number violation $\Delta L = 2$
- v's have Majorana character
- mass scale
- physics beyond the standard model

Double Beta Decay

 $0\nu\beta\beta$: Range of m_{ee} from oscillation experiments

25th anniversary Rencontres du Vietr.....

m_{lightest} [eV]

Discovery probabilities

- Global Bayesian analysis including v-oscillation, $m_\beta\,m_{\beta\beta},\,\Sigma$
- Priors:

25th anniversary Rencontres du Vietnam

- Majorana phases (flat)
- m₁ (scale invariant)

Agostini, Benato, Detwiler arXiv:1705.02996

Discovery sensitivity vs. background

Courtesy J. Detwiler

Nuclear matrix elements

Xenon Experiments: EXO-200

	Sensitivity (yr)	90% CL Limit (yr)	<m<sub>66> (meV)</m<sub>
PRL 109, 032505 (2012)	0.7x10 ²⁵	1.6x10 ²⁵	PP 1
Nature 510, 229 (2014)	1.9x10 ²⁵	1.1x10 ²⁵	
PRL 120 072701 (2018)	3.8x10 ²⁵	1.8x10 ²⁵	147-398

Xenon Experiments: nEXO

Phase-2: 2013/12/11 - 2015/10/27 534.5 days (504 kg-yr)

Courtesy K. Inoue PRL117, 082503 (2016)

- 2017: data taking with 750 kg ^{enr}Xe (new balloon)
- KamLAND2-Zen with 1000kg+ proposed

Phase I + II: > $1.07 \ 10^{26} \text{ yr} (90\% \text{ C.L.})$

e₁

¹³⁶Xe high-pressure (10-15 bar) TPC

NEXT-NEW (5 kg) 2015-2018

Underground & radio-pure operations, background, 2vββ

 $0\nu\beta\beta$ search

220

200

180

160

140

120

100

80

-200

۲ (mm)

NEXT-ton

hYZ weight

29857

-53.12

29.24

25.77

148.5 5

-0.25

Entries

Mean x

Mean y

RMS x

RMS y

Xenon Experiments: PandaX-III

- First 200-kg module:
 - Microbulk Micromegas for charge readout
 - 3% FWHM, 1 x 10⁻⁴ c/keV/kg/y in the ROI
- Ton-scale:
 - Four more modules with upgraded charge readout and better low-background material screening.
 - 1% FWHM, 1 x 10⁻⁵ c/keV/kg/y in the ROI

Courtesy Ke Han

Filling with unloaded liquid scintillator 2018

SNO+

- 3.9 t Te
- 780 t LAB(+PPO+Te-ButaneDiol)
- 0.5% loading \rightarrow 1300 kg ¹³⁰Te

Sensitivity: 5 yr T $_{1/2}$ > 2×10²⁶ yr (90% CL)

Cryogenic Detectors: CUORE

Cryogenic Detectors: CUORE

25th anniversary Rencontres du Vietnam

J. Ouellet, Neutrino 2018

Cryogenic Detectors: CUPID

0

Energy [keV]

Double Beta Decay 25th anniversary Rencontres du Vietnam

Cryogenic Detectors: AMoRE

AMoRe-pilot project @ YangYang 6 crystals (1.8 kg) 40Ca100MoO₄

Courtesy Moo-Hyun Lee

¹⁰⁰Mo procurement

AMoRE-1 5 kg 2018

AMoRE-II 200 kg 2020

ongoing (100 kg)

S. Schönert | TUM **Double Beta Decay** 25th anniversary Rencontres du Vietnam

GERDA experimental setup at LNGS

GERDA experimental setup at LNGS

a) overview

- a) overview b) liquid argon (LAr)
- veto instrumentation

Interplay between PSD and LAr Veto

²²⁸Th calibration source

The full energy range – after PSD and LAr

Unblinded data

Fit to full GERDA data sets

S. Schönert | TUM Double Beta Decay 25th anniversary Rencontres du Vietnam Univ. New Mexico L'Aquila Univ. and INFN Gran Sasso Science Inst. Lab. Naz. Gran Sasso Univ. Texas Tsinghua Univ. Lawrence Berkeley Natl. Lab. Leibniz Inst. Crystal Growth Comenius Univ. Lab. Naz. Sud Univ. of North Carolina Sichuan Univ. Univ. of South Carolina Jagiellonian Univ. Banaras Hindu Univ. Univ. of Dortmund Tech. Univ. – Dresden Joint Inst. Nucl. Res. Inst. Nucl. Res. Russian Acad. Sci. Joint Res. Centre, Geel

LEGEND: the collaboration

Chalmers Univ. Tech. Max Planck Inst., Heidelberg Dokuz Eylul Univ Queens Univ. Univ. Tennessee Argonne Natl. lab. Univ. Liverpool Univ. College London

Los Alamos Natl. Lab. Lund Univ. **INFN Milano Bicocca** Milano Univ. and Milano INFN Natl. Res. Center Kurchatov Inst. Lab. for Exper. Nucl. Phy. MEPhI Max Planck Inst., Munich Technical Univ. Munich Oak Ridge Natl. Lab. Padova Univ. and Padova INFN Czech Tech. Univ. Prague Princeton Univ. North Carolina State Univ. South Dakota School Mines Tech. Univ. Washington Academia Sinica Univ. Tuebingen Univ. South Dakota Univ. Zurich

Foundations: Gerda & Majorana

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

GERDA Bare ^{enr}Ge detectors immersed in instrumented LAr shield

MAJORANA DEMONSTRATOR ^{enr}Ge detectors operated in vacuum cryostats in a passive graded shield with ultra-clean copper

The LEGEND program

LEGEND-200 (first phase):

- up to 200 kg of detectors
- BI ~0.6 cts/(FWHM t yr)
- use existing GERDA infrastructure at LNGS
- design exposure: 1 t yr
- Sensitivity 10²⁷ yr
- Isotope procurement ongoing
- Start in 2021

LEGEND-1000 (second phase):

- 1000 kg of detectors (deployed in stages)
- BI <0.1 cts/(FWHM t yr)
- Location tbd
- Design exposure 12 t yr
- 1.2 x10²⁸ yr

LEGEND,

Discovery sensitivities

(5 yr live time)

Agostini, Benato, Detwiler arXiv:1705.02996

Probing quasi-degenerate Majorana masses

Summary & Outlook

- Strong activities world-wide for preparation of **ton-scale** experiments
- Very high discovery potential for IO
- Reasonable high discovery potential also for NO (assuming absence of mechanism driving $m_{\beta\beta}$ or m_l to zero)
- Several DBD isotopes and techniques required, given NME uncertainties and low signal rates
- Formidable experimental challenges to acquire ton yr exposure quasi background free
- Community now ready to move to ton-scale experiments with most reasonable extrapolations w.r. to detector performance and background reduction
- Staging largely adopted to produce physics results & minimize (project) risks
- Experimental design for **discovery** (not limit setting!)

