

A measurement of muon anomalous magnetic moment at Fermilab

Outline

- Overview
- Experimental techniques
- Status of the experiment
- Summary

Muon magnetic moment and the anomaly

The muon has an intrinsic magnetic moment:

$$\vec{\mu} = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$$

- Precesses in an external magnetic field with a frequency determined by the gyromagnetic ratio g_{μ}
- $g_{\mu}=2$ from Dirac equation for a spin-1/2 charged particle

- In reality: $g_{\mu}>2$, i.e. there is an anomalous magnetic moment.
- The anomaly: $a_{\mu} = \frac{g_{\mu} 2}{2}$

a_{μ} in the Standard Model

Uncertainty dominated by hadron corrections:

Experimental vs theoretical values

- Best measurement: BNL E821
 from 1999 to 2001,
 - uncertainty: 540 ppb
 - 3 4 σ difference from SM predictions
- Inspired new efforts from theorists: Muon g-2 Theory Initiative

Phys. Rev. D 97 (2018) 114025

- focus on reducing uncertainties on HVP and HLbL contributions
- 4 workshops taken place
- would publish 1st report in Sep 2018

New Muon g-2 experiment at Fermilab

- Goal: 4 times improvement in precision, i.e. to 140 ppb
 - increased statistics: 21
 times number of events
 recorded in BNL E821
 (2×10¹¹¹ events, 480 ppb
 → 100 ppb)
 - reduced systematics: 2.5
 times better (248 ppb →
 100 ppb)

- Store longitudinally polarized muons in a ring, with uniform dipole magnetic field B
- Consider difference between spin and cyclotron frequencies:

$$\omega_s = \frac{geB}{2mc} + (1 - \gamma) \frac{eB}{\gamma mc}$$

$$\omega_{c} = \frac{eB}{\gamma mc}$$

$$\omega_{a} = \omega_{s} - \omega_{c} = \frac{g - 2}{2} \frac{e}{m} B$$

$$\omega_{a} = a \frac{e}{m} B$$

• If $g_{\mu}=2$: spin always aligns with momentum

- Store longitudinally polarized muons in a ring, with uniform dipole magnetic field B
- Consider difference between spin and cyclotron frequencies:

$$\omega_s = \frac{geB}{2mc} + (1 - \gamma) \frac{eB}{\gamma mc}$$

• If $g_{\mu} \neq 2$: spin beats against momentum, oscillating radially

$$\omega_c = \frac{eB}{\gamma mc}$$

$$\omega_a = \omega_s - \omega_c = \frac{g - 2}{2} \frac{e}{m} B$$

$$\omega_a = a \frac{e}{m} B$$

- Store longitudinally polarized muons in a ring, with uniform dipole magnetic field B
- Consider difference between spin and cyclotron frequencies:

$$\omega_s = \frac{geB}{2mc} + (1 - \gamma) \frac{eB}{\gamma mc}$$

• If $g_{\mu} \neq 2$: spin beats against momentum, oscillating radially

$$\omega_c = \frac{eB}{\gamma mc}$$

$$\omega_a = \omega_s - \omega_c = \frac{g - 2}{2} \frac{e}{m} B$$

$$\omega_a = a \frac{e}{m} B$$

- Store longitudinally polarized muons in a ring, with uniform dipole magnetic field B
- Consider difference between spin and cyclotron frequencies:

$$\omega_s = \frac{geB}{2mc} + (1 - \gamma) \frac{eB}{\gamma mc}$$

• If $g_{\mu} \neq 2$: spin beats against momentum, oscillating radially

• Actual extraction of a_{μ} :

$$a_{\mu} = \frac{\omega_a}{\widetilde{\omega}_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

- $\tilde{\omega}_p$ is weighted average of Lamor precession frequency of a free proton in the magnetic field
 - measured using NMR probes and an absolute calibration probe

• Actual extraction of a_{μ} :

$$\delta\left(\frac{m_{\mu}}{m_e}\right) \sim 25 \,\mathrm{ppb}$$

$$a_{\mu} = \frac{\omega_a}{\widetilde{\omega}_p} \frac{\mu_p}{\mu_e} \frac{m_{\mu}}{m_e} \frac{g_e}{2}$$

$$\delta\left(\frac{\mu_e}{\mu_p}\right) \sim 8 \,\mathrm{ppb}$$
 $\delta\left(\frac{g_e}{2}\right) \sim 0.3 \,\mathrm{ppt}$

*Uncertainties are taken from CODATA

- $\tilde{\omega}_p$ is weighted average of Lamor precession frequency of a free proton in the magnetic field
 - measured using NMR probes and an absolute calibration probe

The Ring

The Ring

The Ring

Real world considerations

- Real muon beam has a small vertical component
- Need vertical electric field to focus the beam

$$\vec{\omega}_a = \frac{e}{mc} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_\mu \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

Real world considerations

- Real muon beam has a small vertical component
- Need vertical electric field to focus the beam

$$\vec{\omega}_a = \frac{e}{mc} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} \right]$$

- Choose γ = 29.304 (p = 3.09 GeV, a.k.a magic momentum)
 - but not all muons are at magic momentum ($\Delta p = 0.5 \%$), i.e. the term is not completely vanished
- Vertical motion of the beam can be corrected for by measuring beam profile
 - using scintillating fiber tracker (destructive), and straw tube trackers (non-destructive)

Shimming 1.45 T field

2 3 4

ppm

14

-4 -3 -2 -1 0 1

radial distance (cm)

Boston University College of Arts & Sciences

-1

ppm

BOSTON

UNIVERSITY

Beam profile measurement

Two tracker stations for monitoring

Beam profile measurement

Two tracker stations for monitoring

Preliminary data: ω_a oscillation

Number of positrons (E > 1.8 GeV) as function of time:

$$N_e(t) \simeq N_0 e^{-\frac{t}{\gamma \tau}} \left[1 - A \cos(\omega_a t + \phi_a)\right]^{*\text{Simplified}}$$

Accumulated statistics

• First physics run from Feb. to early Jul. 2018: 1/10 of targeted number of positrons collected

Outlook

- Just finished the first physics run
- Upgrading elements of the storage system
- Analysis of the first dataset in progress
- 3 papers on a_{μ} planned

- It is an interesting time for muon g-2!
 - lots of progress from the Theory Initiative
 - production data taking has been started
- Detectors performed well, analysis tool chain is ready
- First result from 2×10¹⁰ e⁺ is scheduled for early 2019

- It is an interesting time for muon g-2!
 - lots of progress from the Theory Initiative
 - production data taking has been started
- Detectors performed well, analysis tool chain is ready
- First result from 2×10¹⁰ e⁺ is scheduled for early 2019

- It is an interesting time for muon g-2!
 - lots of progress from the Theory Initiative
 - production data taking has been started
- Detectors performed well, analysis tool chain is ready
- First result from 2×10¹⁰ e⁺ is scheduled for early 2019

- It is an interesting time for muon g-2!
 - lots of progress from the Theory Initiative
 - production data taking has been started
- Detectors performed well, analysis tool chain is ready
- First result from 2×10¹⁰ e⁺ is scheduled for early 2019

- It is an interesting time for muon g-2!
 - lots of progress from the Theory Initiative
 - production data taking has been started
- Detectors performed well, analysis tool chain is ready
- First result from 2×10¹⁰ e⁺ is scheduled for early 2019

Backup

ω_a measurement

Highest energy positrons are correlated with the muon spin

- As the µ⁺ spin precesses towards and away from the calorimeters the number of high energy e⁺ is modulated
- The muons pass the calorimeters at cyclotron frequency ω_c, so the modulation occurs at the difference freq, ω_a

Why a_{μ} and not a_{e}

- Coupling of virtual loops goes as m²
- Therefore, while a_{μ} is measured much less precisely than the a_{e} , it has better sensitivity to heavy physics scales:

$$\left(\frac{m_{\mu}}{m_e}\right)^2 \simeq 43,000$$

- E.g. lowest-order hadronic contribution to a_e is
 a^{had,LO} = (1.875 ± 0.017) x 10⁻¹² (1.5 ppb of a_e)
- By comparison, for the muon the hadronic contribution is ~60 ppm.

Muon g-2 measurement uncertainties

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had, VP}} + a_{\mu}^{\text{had, LbL}}$$
$$= 0.001 \, 165 \, 918 \, 23(43)$$

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had, VP}} + a_{\mu}^{\text{had, LbL}}$$
$$= 0.001 \, 165 \, 918 \, 23(43)$$

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had, VP}} + a_{\mu}^{\text{had, LbL}}$$

$$= 0.00116591823(43)$$

• QED:

- known to 5-loop
- 99.99% of $a_{\mu}^{\rm SM}$ ~0.001% of $\delta a_{\mu}^{\rm SM}$

- QED:
 - known to 5-loop

 - 99.99% of $a_{\mu}^{\rm SM}$ 0.0001% of $a_{\mu}^{\rm SM}$ 0.2% of $\delta a_{\mu}^{\rm SM}$
- known to 2-loop

$$a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had, VP}} + a_{\mu}^{\text{had, LbL}}$$

$$= 0.00116591823(43)$$
*EW: *Hadron:

- - known to 5-loop

 - 99.99% of $a_{\mu}^{\rm SM}$ ~0.001% of $\delta a_{\mu}^{\rm SM}$
- known to 2-loop
- 0.0001% of a_{μ}^{SM} 0.2% of $\delta a_{\mu}^{\mathrm{SM}}$

- · Hadron:
 - 0.006% of $a_{\mu}^{\rm SM}$ ~99.8% of $\delta a_{\mu}^{\rm SM}$

- Storage ring: 14 m diameter toroidal C-magnet with 1.45 T field
- Inflector magnet nullifies the storage ring field for incoming muons
- Muons that pass through the inflector are off central orbit
- Magnetic kicker moves the orbit to the centre of the storage ring

- Storage ring: 14 m diameter toroidal C-magnet with 1.45 T field
- Inflector magnet nullifies the storage ring field for incoming muons
- Muons that pass through the inflector are off central orbit
- Magnetic kicker moves the orbit to the centre of the storage ring
- Muons focussed vertically with electrostatic quadrupoles

Muon EDM search

A non-zero muon EDM would modify the spin equation

$$\vec{\omega}_{a\eta} = -\frac{Qe}{m} \left[a\vec{B} - \left(a - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] + \left(\eta \frac{Qe}{2m} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right] \right)$$

• $\vec{\beta} \times \vec{B}$ dominates, so precession plane is tilted.

$$\omega = \sqrt{\omega_a^2 + \omega_\eta^2} = \sqrt{\omega_a^2 + \left(\frac{e\eta\beta B}{2m}\right)^2} \quad \blacksquare$$

• Search for an up-down oscillation, out of phase with ω_a .

$$\Omega_{a}^{\text{eff}} = \Omega_{s}^{\text{eff}} - \Omega_{c}^{\text{eff}}
= -\frac{e}{m} \left((1 + 3\epsilon^{2}\phi) a_{\mu} \mathbf{B} \right)$$

$$- \left[a_{\mu} - \frac{1}{\gamma^{2} - 1} + \epsilon^{2}\phi \left(4 + a_{\mu} + \frac{3}{\gamma^{2} - 1} \right) \right] \boldsymbol{\beta} \times \mathbf{E}$$

$$- a_{\mu} \frac{\gamma}{\gamma + 1} \left(1 - \epsilon^{2}\phi (2\gamma - 1) \right) (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} \right).$$
Prog. Theor. Exp. Phys. 063B07 (2018)

The GR paper, and why it was wrong (?)

$$\left[\left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \pm \xi \right] \frac{\vec{\beta} \times \vec{E}}{c}$$

$$= \underbrace{\left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c}}_{\text{radial } E-\text{field correction}} \pm \xi \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

$$\frac{\Delta a_{\mu}}{a_{\mu}} = \frac{\xi \times \beta \times (E_r)_{avg}}{cBa_{\mu}} \tag{26}$$

To calculate a numerical value, we use B = 1.45 T, $\beta = 0.9994$, $a_{\mu} = 1.1659 \times 10^{-3}$. Using these values and $\xi = 2.8 \times 10^{-9}$ one gets:

$$\frac{\Delta a_{\mu}}{a_{\mu}} = 1.4 \times 10^{-10} \,, \tag{27}$$

Tracker-Calorimeter Cross-checks

 Independent measurement of e⁺ momentum, time and position for calo systematic checks

