Measurements of lepton flavor non-universality in B decays at Belle

Koji Hara (KEK)
for the Belle Collaboration

Aug. 8, 2018
25th Anniversary of the Rencontres du Vietnam
Outline

- R(D) and R(D*) measurement with $B \xrightarrow{} D(*)\tau\nu$
- Test of lepton universality in $B \xrightarrow{} K^\ast\pi$
- Search for Lepton flavor violating decay $B \xrightarrow{} K^\ast\mu\nu$
Belle and KEKB

- **KEKB**
 - Achieved World Highest Luminosity (as of 2009)
 - $L = 2.1 \times 10^{34} \text{ /cm}^2 \text{/sec} \approx 20 \text{ BB pairs / sec}$
 - Asymmetric energy to boost B mesons
 - $8.0 \text{GeV} \ e^- \times 3.5 \text{GeV} \ e^+$

- **Belle**
 - Multi-purpose 4π detector
 - Vertexing, tracking, EM calorimeter, PID

- Data taking for 1999-2010
Belle Integrated Luminosity

- The world largest integrated luminosity of $>1 \text{ab}^{-1}$
- 711 fb^{-1} on $Y(4S)$ resonance $\rightarrow 772 \times 10^{6}$ BB pairs

On resonance:
- $Y(5S): 121 \text{ fb}^{-1}$
- $Y(4S): 711 \text{ fb}^{-1}$
- $Y(3S): 3 \text{ fb}^{-1}$
- $Y(2S): 25 \text{ fb}^{-1}$
- $Y(1S): 6 \text{ fb}^{-1}$

Off res. / scan:
- $\sim 100 \text{ fb}^{-1}$
Semi-tauonic B decay: $B \rightarrow D^{(*)} \tau \nu$

- Sensitive to new physics

Ratio of τ to μ, e could be reduced/enhanced

$$R(D^{(*)}) = \frac{\mathcal{B}(B \rightarrow D^{(*)} \tau \nu)}{\mathcal{B}(B \rightarrow D^{(*)} \ell \nu)}$$

Polarization of tau could probe the NP model

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

NP model (vector, scalar, tensor) dependence

[M. Tanaka and R. Watanabe PRD 87, 034028 (2013)]
B → D(*)τν Analysis at Belle

Utilize the B factory specific feature: only one B-meson pair is produced

Tag Side

- Tag B pair event by reconstructing one B meson in hadronic or semileptonic B Decay
- Provide pure single B event

Signal Side

- Final state has two or more neutrinos
- Remaining energy in the calorimeter (E_{ECL})

Diagram

\[B^- \rightarrow X \]

\[B^+ \rightarrow D \tau^+ \nu_\tau \]

Require no particle remains after removing products of tagging B and the particle(s) from signal decays

25th Anniversary of the Rencontres du Vietnam
Tagging Methods

- **Hadronic Tag**
 - Fully reconstruct in $B \rightarrow D X$ decays
 - ~ 1100 exclusive decay channels
 - [NIM A 654, 432 (2011)]
 - Tagging efficiency $\sim 0.2\%$
 - Less background

- **Semileptonic Tag**
 - Reconstruct $B \rightarrow D^{(*)} l \nu$
 - $E_B = E_{\text{beam}}$
 - Undetected neutrino mass ~ 0
 - Tagging efficiency $\sim 0.5\%$
 - More background

\[m_{bc} = \sqrt{E_{\text{beam}}^2 - P_B^2} \]

\[\cos \theta_{B,D^{(*)} l} = \frac{2E_{\text{beam}}E_{D^{(*)} l} - m_B^2 - M_{D^{(*)} l}^2}{2P_B^*P_{D^{(*)} l}^*} \]
Results with leptonic tau decays

Hadronic Tag [PRD92,072014(2015)]

Semileptonic Tag [PRD94,072007(2016)]

$$R(D) = 0.375 \pm 0.064 \pm 0.026$$

$$R(D^*) = 0.293 \pm 0.038 \pm 0.015$$

$$R(D^*) = 0.302 \pm 0.030 \pm 0.011$$

Consistent with, but higher than the SM predictions:

R(D) = 0.299 +/- 0.003
R(D^*) = 0.258 +/- 0.005

[SM average of HFLAV Summer 2018]
Results of Polarization Measurement

- Hadronic tag
- Two body tau decays: \(\tau \to \pi \nu, \rho \nu \)
 - Helicity angle sensitive to the tau polarization

\[
\frac{1}{\Gamma} \frac{d\Gamma}{d \cos \theta_{\text{hel}}} = \frac{1}{2} \left(1 + \alpha \cdot P_\tau \cos \theta_{\text{hel}} \right)
\]

\[
\alpha = \begin{cases}
1 & \text{for } \tau \to \pi^- \nu \\
0.45 & \text{for } \tau \to \rho^- \nu
\end{cases}
\]

\[
R(D^*) = 0.270 \pm 0.035 \text{(stat)} ^{+0.028}_{-0.025} \text{(syst)},
\]

\[
P_\tau(D^*) = -0.38 \pm 0.51 \text{(stat)} ^{+0.21}_{-0.16} \text{(syst)},
\]

25th Anniversary of the Rencontres du Vietnam
Current $B \rightarrow D(*)\tau\nu$ Situation

3.8σ deviation from the SM prediction!

Additional Belle results will come soon

Belle II has started \Rightarrow Significant improvement in near future
Lepton Universality in $B\to K^{*}\mu\mu$

- LHCb reported 2.6 σ tension in
 \[R_K \equiv \frac{\mathcal{B}(B\to K^+\mu^+\mu^-)}{\mathcal{B}(B\to K^+e^+e^-)} \quad R^*_K \equiv \frac{\mathcal{B}(B\to K^{*}\mu^+\mu^-)}{\mathcal{B}(B\to K^{*}e^+e^-)} \]
- also in angular observable
 \[P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}} \quad \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} : \theta_K, \theta_L, \phi, F_L, S_i \]

- [PRL 113, 151601(2014), JHEP 08(2017), 055]
- [JHEP 02(2016), 104]
B\rightarrowK*ll Angular Analysis Results

- B\rightarrowK*$\mu\mu$, K*ee reconstructed with Belle full data
- Angular analysis performed in four bins to obtain angular observables
 - P'_i
 - the difference between the lepton flavors
 \[Q_i = P^\mu_i - P^e_i \]

Largest deviation in P'_5 of muon mode with 2.6σ

[N_{sig} = 127 \pm 15]

[N_{sig} = 185 \pm 17]

[PRL118, 111801 (2017)]
Comparison with other measurements

- Measurements are compatible with the SM
- Similar central values for the P'_5 anomaly with 2.5s tension
Search for lepton flavor violating decay $B^0 \rightarrow K^{*0}\mu e$

- 2018 New Belle Result with 772M $B\bar{B}$

[arXiv:1807.03267 submitted to PRD]

No signal observed
Set most stringent limit of these decays

$\mathcal{B}(B^0 \rightarrow K^{*0}\mu^+e^-) < 1.2 \times 10^{-7}$

$\mathcal{B}(B^0 \rightarrow K^{*0}\mu^-e^+) < 1.6 \times 10^{-7}$

$\mathcal{B}(B^0 \rightarrow K^{*0}\mu^\pm e^\mp) < 1.8 \times 10^{-7}$
Summary

• Belle measured lepton universality using the data sample of the world largest luminosity

• **Tensions from the SM** exist in the measurements of $B \rightarrow D(*)\tau\nu$ and $B \rightarrow K^{*}\mu\mu$

• New search for the LFV decay $B \rightarrow K^{*}\mu\epsilon$ has been performed and set the most stringent limits

• Still need more results to be conclusive
 - Still some more analyses on going at Belle
 - Significant improvement from Belle II in near future
B→D(*)τν Systematic Errors

Hadronic Tag

TABLE IV. Overview of relative systematic uncertainties in percent. The last column gives the correlation between $R(D)$ and $R(D^*)$.

<table>
<thead>
<tr>
<th>Source</th>
<th>$R(D)$ [%]</th>
<th>$R(D^*)$ [%]</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^{(*)}\nu$ shapes</td>
<td>4.2</td>
<td>1.5</td>
<td>0.04</td>
</tr>
<tr>
<td>D^{**} composition</td>
<td>1.3</td>
<td>3.0</td>
<td>-0.63</td>
</tr>
<tr>
<td>Fake D yield</td>
<td>0.5</td>
<td>0.3</td>
<td>0.13</td>
</tr>
<tr>
<td>Fake ℓ yield</td>
<td>0.5</td>
<td>0.6</td>
<td>-0.66</td>
</tr>
<tr>
<td>D_ℓ yield</td>
<td>0.1</td>
<td>0.1</td>
<td>-0.85</td>
</tr>
<tr>
<td>Rest yield</td>
<td>0.1</td>
<td>0.0</td>
<td>-0.70</td>
</tr>
<tr>
<td>Efficiency ratio f_{D^+}</td>
<td>2.5</td>
<td>0.7</td>
<td>-0.98</td>
</tr>
<tr>
<td>Efficiency ratio $f_{D^{*0}}$</td>
<td>1.8</td>
<td>0.4</td>
<td>0.86</td>
</tr>
<tr>
<td>Efficiency ratio f_{π^+}</td>
<td>1.3</td>
<td>2.5</td>
<td>-0.99</td>
</tr>
<tr>
<td>Efficiency ratio f_{π^0}</td>
<td>0.7</td>
<td>1.1</td>
<td>0.94</td>
</tr>
<tr>
<td>CF double ratio g_+</td>
<td>2.2</td>
<td>2.0</td>
<td>-1.00</td>
</tr>
<tr>
<td>CF double ratio g_-</td>
<td>1.7</td>
<td>1.0</td>
<td>-1.00</td>
</tr>
<tr>
<td>Efficiency ratio f_{η}</td>
<td>0.0</td>
<td>0.0</td>
<td>0.84</td>
</tr>
<tr>
<td>$M_{\pi\pi}$ shape</td>
<td>0.6</td>
<td>1.0</td>
<td>0.00</td>
</tr>
<tr>
<td>ω shape</td>
<td>3.2</td>
<td>0.8</td>
<td>0.00</td>
</tr>
<tr>
<td>Lepton PID efficiency</td>
<td>0.5</td>
<td>0.5</td>
<td>1.00</td>
</tr>
<tr>
<td>Total</td>
<td>7.1</td>
<td>5.2</td>
<td>-0.32</td>
</tr>
</tbody>
</table>

Semileptonic Tag

TABLE I. Summary of the systematic uncertainties on $R(D^*)$ for electron and muon modes combined and separated. The uncertainties are relative and are given in percent.

<table>
<thead>
<tr>
<th>Sources</th>
<th>$R(D^*)$ [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC size for each PDF shape</td>
<td>$\pm1.2%$</td>
</tr>
<tr>
<td>PDF shape of the normalization in $\cos\theta_{B,D\ell}$</td>
<td>$\pm0.0%$</td>
</tr>
<tr>
<td>PDF shape of $B \to D^{**}\ell \bar{\nu}_\ell$</td>
<td>$\pm0.7%$</td>
</tr>
<tr>
<td>PDF shape of $B \to D\ell \bar{\nu}_\ell$</td>
<td>$\pm1.2%$</td>
</tr>
<tr>
<td>PDF shape of $B \to X_c D^*$</td>
<td>$\pm1.1%$</td>
</tr>
<tr>
<td>Reconstruction efficiency ratio $\epsilon_{norm}/\epsilon_{sig}$</td>
<td>$\pm0.0%$</td>
</tr>
<tr>
<td>Modeling of semileptonic decay</td>
<td>$\pm0.0%$</td>
</tr>
<tr>
<td>$B(\tau^- \to \ell^- \nu_\ell \bar{\nu}_\ell)$</td>
<td>$\pm0.0%$</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>$\pm4.1%$</td>
</tr>
</tbody>
</table>

Hadronic Tag, hadronic tau decay

TABLE II. The systematic uncertainties in $R(D^*)$ and $P_+(D^*)$, where the values for $R(D^*)$ are relative errors. The group “common sources” identifies the common systematic uncertainty sources in the signal and the normalization modes, which cancel to a good extent in the ratio of these samples. The reason for the incomplete cancellation is described in the text.

<table>
<thead>
<tr>
<th>Source</th>
<th>$R(D^*)$</th>
<th>$P_+(D^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hadronic B composition</td>
<td>$\pm7.7%$</td>
<td>±0.134</td>
</tr>
<tr>
<td>MC statistics for PDF shape</td>
<td>$\pm0.9%$</td>
<td>±0.103</td>
</tr>
<tr>
<td>Fake D^*</td>
<td>$\pm2.8%$</td>
<td>±0.18</td>
</tr>
<tr>
<td>$B \to D^{**}\ell^- \bar{\nu}_\ell$</td>
<td>$\pm2.4%$</td>
<td>±0.048</td>
</tr>
<tr>
<td>$B \to D^{*+}\tau^- \bar{\nu}_\tau$</td>
<td>$\pm1.1%$</td>
<td>±0.001</td>
</tr>
<tr>
<td>$B \to D'^+\ell^- \bar{\nu}_\ell$</td>
<td>$\pm2.3%$</td>
<td>±0.007</td>
</tr>
<tr>
<td>τ daughter and $\ell^-\ell^+$ efficiency</td>
<td>$\pm1.9%$</td>
<td>±0.019</td>
</tr>
<tr>
<td>MC statistics for efficiency estimation</td>
<td>$\pm1.0%$</td>
<td>±0.019</td>
</tr>
<tr>
<td>$B(\tau^- \to \pi^- \nu_\tau \rho^- \bar{\nu}_\tau)$</td>
<td>$\pm0.3%$</td>
<td>±0.002</td>
</tr>
<tr>
<td>$P_+(D^*)$ correction function</td>
<td>$\pm0.0%$</td>
<td>±0.010</td>
</tr>
</tbody>
</table>

Common sources

<table>
<thead>
<tr>
<th>Source</th>
<th>$R(D^*)$</th>
<th>$P_+(D^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagging efficiency correction</td>
<td>$\pm1.6%$</td>
<td>±0.018</td>
</tr>
<tr>
<td>D^* reconstruction</td>
<td>$\pm1.4%$</td>
<td>±0.006</td>
</tr>
<tr>
<td>Branching fractions of the D meson</td>
<td>$\pm0.8%$</td>
<td>±0.007</td>
</tr>
<tr>
<td>Number of BB and $B(\Upsilon(4S) \to B^+ B^-)$</td>
<td>$\pm0.5%$</td>
<td>±0.006</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>$\pm4.0%$</td>
<td>±0.21</td>
</tr>
</tbody>
</table>
R(D) and R(D*) Measurements

BaBar had. tag
0.440 ± 0.058 ± 0.042

Belle had. tag
0.375 ± 0.064 ± 0.026

Average
0.407 ± 0.039 ± 0.024

PRD94,094008(2016)
0.299 ± 0.003

FNAL/MILC (2015)
0.299 ± 0.011

HPQCD (2015)
0.300 ± 0.008

BaBar had. tag
0.332 ± 0.024 ± 0.018

Belle had. tag
0.293 ± 0.038 ± 0.015

Belle sl.tag
0.302 ± 0.030 ± 0.011

Belle hadronic tau
0.270 ± 0.035 ± 0.027

LHCb muonic tau
0.336 ± 0.027 ± 0.030

LHCb hadronic tau
0.291 ± 0.019 ± 0.029

Average
0.306 ± 0.013 ± 0.007

SM Pred. average
0.258 ± 0.005

PRD 95 (2017) 115008
0.257 ± 0.003

JHEP 1711 (2017) 061
0.260 ± 0.008

JHEP 1712 (2017) 060
0.257 ± 0.005
\[
\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell \ d\cos\theta_K \ d\phi \ dq^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1 - F_L) \sin^2\theta_K \cos 2\theta_\ell \\
- F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \\
+ S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\
+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right],
\]

\[
P_{i=4,5,6,8}^{r} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}
\]
B → K*ll Results and Syst. Errors.

TABLE I. Fit results for P' and P'' for all decay channels and separately for the electron and muon modes. The first uncertainties are statistical and the second systematic.

<table>
<thead>
<tr>
<th>q^2 in GeV2/c2</th>
<th>P'_4</th>
<th>P''_4</th>
<th>P'_5</th>
<th>P'_5'</th>
<th>P''_5</th>
<th>P''_5'</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1.00, 6.00]</td>
<td>$-0.45^{+0.23}_{-0.22} \pm 0.09$</td>
<td>$-0.72^{+0.40}_{-0.39} \pm 0.06$</td>
<td>$-0.22^{+0.35}_{-0.34} \pm 0.15$</td>
<td>$0.23^{+0.21}_{-0.22} \pm 0.07$</td>
<td>$-0.22^{+0.39}_{-0.41} \pm 0.03$</td>
<td>$0.43^{+0.25}_{-0.28} \pm 0.10$</td>
</tr>
<tr>
<td>[0.10, 4.00]</td>
<td>$0.11^{+0.32}_{-0.31} \pm 0.05$</td>
<td>$0.34^{+0.41}_{-0.45} \pm 0.11$</td>
<td>$-0.38^{+0.30}_{-0.46} \pm 0.12$</td>
<td>$0.47^{+0.27}_{-0.28} \pm 0.05$</td>
<td>$0.51^{+0.39}_{-0.46} \pm 0.09$</td>
<td>$0.42^{+0.39}_{-0.38} \pm 0.14$</td>
</tr>
<tr>
<td>[4.00, 8.00]</td>
<td>$-0.34^{+0.18}_{-0.17} \pm 0.05$</td>
<td>$-0.52^{+0.24}_{-0.22} \pm 0.03$</td>
<td>$-0.07^{+0.32}_{-0.31} \pm 0.07$</td>
<td>$-0.30^{+0.19}_{-0.19} \pm 0.09$</td>
<td>$-0.52^{+0.28}_{-0.26} \pm 0.03$</td>
<td>$-0.03^{+0.31}_{-0.30} \pm 0.09$</td>
</tr>
<tr>
<td>[10.09, 12.90]</td>
<td>$-0.18^{+0.28}_{-0.26} \pm 0.06$</td>
<td>$-0.52^{+0.17}_{-0.22} \pm 0.04$</td>
<td>$-0.10^{+0.39}_{-0.39} \pm 0.07$</td>
<td>$-0.51^{+0.36}_{-0.39} \pm 0.03$</td>
<td>$-0.91^{+0.36}_{-0.30} \pm 0.03$</td>
<td>$-0.13^{+0.35}_{-0.35} \pm 0.06$</td>
</tr>
</tbody>
</table>

TABLE II. Results for the lepton-flavor-universality-violating observables Q_4 and Q_5. The first uncertainty is statistical and the second systematic.

<table>
<thead>
<tr>
<th>q^2 in GeV2/c2</th>
<th>Q_4</th>
<th>Q_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1.00, 6.00]</td>
<td>$0.498 \pm 0.527 \pm 0.166$</td>
<td>$0.056 \pm 0.485 \pm 0.163$</td>
</tr>
<tr>
<td>[0.10, 4.00]</td>
<td>$-0.723 \pm 0.676 \pm 0.163$</td>
<td>$-0.097 \pm 0.601 \pm 0.164$</td>
</tr>
<tr>
<td>[4.00, 8.00]</td>
<td>$0.448 \pm 0.392 \pm 0.076$</td>
<td>$0.498 \pm 0.410 \pm 0.095$</td>
</tr>
<tr>
<td>[14.18, 19.00]</td>
<td>$0.041 \pm 0.565 \pm 0.082$</td>
<td>$0.778 \pm 0.502 \pm 0.065$</td>
</tr>
</tbody>
</table>
B\rightarrowK*μe Upper Limits

Upper limit at 90% CL.

229M$B\bar{B}$

Belle (2017)

772M$B\bar{B}$

$K^{*0}\mu^{+}e^{-}$

$K^{*0}\mu^{-}e^{+}$

$K^{*0}\mu^{\pm}e^{\mp}$

25th Anniversary of the Rencontres du Vietnam