

Measurements of lepton flavor non-universality in B decays at Belle

Koji Hara (KEK)

for the Belle Collaboration

Aug. 8, 2018 25th Anniversary of the Rencontres du Vietnam

Outline

- R(D) and R(D*) measurement with B→D(*)τν
- Test of lepton universality in B→K*II
- Search for Lepton flavor violating decay
 B→K*µe

Belle and KEKB

- **KEKB**
 - Achieved World Highest Luminosity (as of 2009)
 - $L = 2.1 * 10^{34} / cm^2 / sec \sim 20 BB pairs / sec$
 - Asymmetric energy to boost B mesons
 - 8.0GeV $e^- \times 3.5$ GeV e^+
- Belle
 - Multi-purpose 4π detector
 - Vertexing, tracking, EM calorimeter, PID
- Data taking for 1999-2010

Belle detector

8 GeV

Belle Integrated Luminosity

- The world largest integrated luminosity of > 1ab⁻¹
- 711 fb⁻¹ on Y(4S) resonance \rightarrow 772×10⁶ BB pairs

Semi-tauonic B decay: $B \rightarrow D^{(*)} \tau \nu$

Sensitive to new physics

Ratio of τ to μ,e could be reduced/enhanced

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)}$$

Polarization of tau could probe the NP model

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}}$$

NP model (vector, scalar, tensor) dependence [M. Tanaka and R. Watanabe PRD 87, 034028 (2013)]

$B \rightarrow D^{(*)}\tau\nu$ Analysis at Belle

<u>Utilize the B factory specific feature :</u> <u>only one B-meson pair is produced</u>

Tag B pair event by reconstructing one B meson in hadronic or semileptonic B Decay

→ Provide pure single B event

Require <u>no</u> particle remains after removing products of tagging B and the particle(s) from signal decays

 \leftarrow Remaining energy in the calorimeter (E_{ECL})

Tagging Methods

Hadronic Tag

- Fully reconstruct in B→DX decays
 - ~1100 exclusive decay channels [NIM A 654, 432 (2011)]
- Tagging efficiency ~ 0.2 %
- Less background

Semileptonic Tag

- o Reconstruct $B \rightarrow D^{(*)} | v$
 - $E_B = E_{beam}$
 - Undetected neutrino mass ~ 0
- Tagging efficiency ~ 0.5%
- More background

Results with leptonic tau decays

Hadronic Tag [PRD92,072014(2015)]

<u>Semileptonic Tag [PRD94,072007(2016)]</u>

$$\mathcal{R}(D^*) = 0.302 \pm 0.030 \pm 0.011$$

Consistent with, but higher than the SM predictions:

$$R(D) = 0.299 + -0.003$$

$$R(D^*) = 0.258 + -0.005$$

[SM average of HFLAV Summer 2018]

Results of Polarization Measurement

Hadronic tag

- [PRL118, 211801 (2017) PRD97, 012004 (2018)]
- Two body tau decays: $\tau \rightarrow \pi \nu$, $\rho \nu$
 - Helicity angle sensitive to the tau polarization

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\text{hel}}} = \frac{1}{2} \left(1 + \alpha \cdot \mathcal{P}_{\tau} \cos\theta_{\text{hel}} \right)$$

$$\alpha = \begin{cases} 1 & \text{for } \tau \to \pi^{-}\nu \\ 0.45 & \text{for } \tau \to \rho^{-}\nu \end{cases}$$

$$R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst}),$$

$$P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst}),$$

Current $B \rightarrow D(*)\tau \nu$ Situation

 3.8σ deviation from the SM prediction!

Additional Belle results will come soon

Belle II has started → Significant improvement in near future

Lepton Universality in B→K*ll

[PRL 113,151601(2014), JHEP 08(2017), 055]

[JHEP 02(2016), 104]

LHCb reported 2.6 σ tension in

$$R_K \equiv \frac{\mathcal{B}(B \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B \to K^+ e^+ e^-)} R_K^* \equiv \frac{\mathcal{B}(B \to K^* \mu^+ \mu^-)}{\mathcal{B}(B \to K^* e^+ e^-)}$$

also in angular observable

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}} \qquad \frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_L d\cos\theta_K d\phi dq^2} : \theta_K, \theta_L, \phi, F_L, S_i$$

B→K*ll Angular Analysis Results

- B \rightarrow K*µµ, K*ee reconstructed with Belle full data
- Angular analysis performed in four bins to obtain angular obsearvables
 - P'_i
 - the difference between the lepton flavors

$$Q_i = P_i^{\mu} - P_i^e$$

Largest deviation in P'₅ of muon mode with 2.6σ

Comparison with other measurements

- Measurements are compatible with the SM
- Similar central values for the P'₅ anomaly with 2.5s tension

Search for lepton flavor violating decay B⁰→K*⁰µe

2018 New Belle Result with 772M BB

[arXiv:1807.03267 submitted to PRD]

Set most stringent limit of these decays $\mathcal{B}(B^0 \to K^{*0}\mu^+e^-) < 1.2 \times 10^{-7}$

$$\mathcal{B}(B^0 \to K^{*0}\mu^+e^-) < 1.2 \times 10^{-7}$$

$$\mathcal{B}(B^0 \to K^{*0}\mu^-e^+) < 1.6 \times 10^{-7}$$

$$\mathcal{B}(B^0 \to K^{*0}\mu^\pm e^\mp) < 1.8 \times 10^{-7}$$

Summary

- Belle measured lepton universality using the data sample of the world largest luminosity
- Tensions from the SM exist in the measurements of B→D(*)τν and B→K*II
- New search for the LFV decay B→K*µe has been performed and set the most stringent limits
- Still need more results to be conclusive
 - o Still some more analyses on going at Belle
 - Significant improvement from Bellell in near future

B→D(*)τν Systematic Errors

Hadronic Tag

TABLE IV. Overview of relative systematic uncertainties in percent. The last column gives the correlation between R(D) and $R(D^*)$.

	R(D) [%]	$R(D^*)$ [%]	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio f_{wc}	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

Semileptonic Tag

TABLE I. Summary of the systematic uncertainties on $\mathcal{R}(D^*)$ for electron and muon modes combined and separated. The uncertainties are relative and are given in percent.

	\mathcal{R}	(D^*) [%]	
Sources	$\ell^{\text{sig}} = e, \mu$	$\ell^{\text{sig}} = e$	$\ell^{\text{sig}} = \mu$
MC size for each PDF shape	2.2	2.5	3.9
PDF shape of the normalization in $\cos\theta_{B\text{-}D^*\ell}$	+1.1 -0.0	$^{+2.1}_{-0.0}$	$^{+2.8}_{-0.0}$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	+1.0 -1.7	+0.7 -1.3	$+2.2 \\ -3.3$
PDF shape and yields of fake $D^{(*)}$	1.4	1.6	1.6
PDF shape and yields of $B \to X_c D^*$	1.1	1.2	1.1
Reconstruction efficiency ratio $\varepsilon_{\text{norm}}/\varepsilon_{\text{sig}}$	1.2	1.5	1.9
Modeling of semileptonic decay	0.2	0.2	0.3
$\mathcal{B}(\tau^- \to \ell^- \bar{\nu}_\ell \nu_\tau)$	0.2	0.2	0.2
Total systematic uncertainty	+3.4 -3.5	+4.1 -3.7	+5.9 -5.8

Hadronic Tag, hadronic tau decay

TABLE II. The systematic uncertainties in $R(D^*)$ and $P_{\tau}(D^*)$, where the values for $R(D^*)$ are relative errors. The group "common sources" identifies the common systematic uncertainty sources in the signal and the normalization modes, which cancel to a good extent in the ratio of these samples. The reason for the incomplete cancellation is described in the text.

Source	$R(D^*)$	$P_{\tau}(D^*)$		
Hadronic B composition	+7.7%	+0.134 -0.103		
MC statistics for PDF shape	-6.9% $+4.0%$ $-2.8%$	+0.146 -0.108		
Fake D^*	$\frac{-2.8\%}{3.4\%}$	0.018		
$\bar{B} \to D^{**} \ell^- \bar{\nu}_{\ell}$	2.4%	0.048		
$\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}$	1.1%	0.001		
$\bar{B} \to D^* \ell^- \bar{\nu}_\ell$	2.3%	0.007		
τ daughter and ℓ^- efficiency	1.9%	0.019		
MC statistics for efficiency estimation	1.0%	0.019		
$\mathcal{B}(\tau^- \to \pi^- \nu_\tau, \rho^- \nu_\tau)$	0.3%	0.002		
$P_{\tau}(D^*)$ correction function	0.0%	0.010		
Common sources				
Tagging efficiency correction	1.6%	0.018		
D^* reconstruction	1.4%	0.006		
Branching fractions of the D meson	0.8%	0.007		
Number of $B\bar{B}$ and $\mathcal{B}(\Upsilon(4S) \to B^+B^- \text{ or } B^0\bar{B}^0)$	0.5%	0.006		
Total systematic uncertainty	+10.4% -9.4%	$^{+0.21}_{-0.16}$		

R(D) and R(D*) Measurements

B→K*ll Differential Decay Rate

$$\begin{split} \frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\,\mathrm{d}\cos\theta_K\,\,\mathrm{d}\phi\,\,\mathrm{d}q^2} = & \frac{9}{32\pi} \left[\frac{3}{4} (1-F_L) \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1}{4} (1-F_L) \sin^2\theta_K \cos 2\theta_\ell \right. \\ & - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi \\ & + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi \\ & + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right], \end{split}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1-F_L)}}$$

B→K*ll Results and Syst. Errors.

TABLE I. Fit results for P'_4 and P'_5 for all decay channels and separately for the electron and muon modes. The first uncertainties are statistical and the second systematic.

q^2 in GeV^2/c^2	P_4'	$P_4^{e}{}'$	$P_4^{\mu}{}'$	P_5'	$P_5^{e\prime}$	$P_5^{\mu}{}'$
[1.00, 6.00]	$-0.45^{+0.23}_{-0.22} \pm 0.09$	$-0.72^{+0.40}_{-0.39} \pm 0.06$	$-0.22^{+0.35}_{-0.34} \pm 0.15$	$0.23^{+0.21}_{-0.22} \pm 0.07$	$-0.22^{+0.39}_{-0.41} \pm 0.03$	$0.43^{+0.26}_{-0.28} \pm 0.10$
[0.10, 4.00]	$0.11^{+0.32}_{-0.31} \pm 0.05$	$0.34^{+0.41}_{-0.45} \pm 0.11$	$-0.38^{+0.50}_{-0.48} \pm 0.12$	$0.47^{+0.27}_{-0.28} \pm 0.05$	$0.51^{+0.39}_{-0.46} \pm 0.09$	$0.42^{+0.39}_{-0.39} \pm 0.14$
[4.00, 8.00]	$-0.34^{+0.18}_{-0.17} \pm 0.05$	$-0.52^{+0.24}_{-0.22}\pm0.03$	$-0.07^{+0.32}_{-0.31} \pm 0.07$	$-0.30^{+0.19}_{-0.19} \pm 0.09$	$-0.52^{+0.28}_{-0.26} \pm 0.03$	$-0.03^{+0.31}_{-0.30} \pm 0.09$
[10.09, 12.90]	$-0.18^{+0.28}_{-0.27} \pm 0.06$	-	$-0.40^{+0.33}_{-0.29} \pm 0.09$	$-0.17^{+0.25}_{-0.25} \pm 0.01$	-	$0.09^{+0.29}_{-0.29} \pm 0.02$
[14.18, 19.00]	$-0.14^{+0.26}_{-0.26} \pm 0.05$	$-0.15^{+0.41}_{-0.40} \pm 0.04$	$-0.10^{+0.39}_{-0.39} \pm 0.07$	$-0.51^{+0.24}_{-0.22} \pm 0.01$	$-0.91^{+0.36}_{-0.30} \pm 0.03$	$-0.13^{+0.39}_{-0.35} \pm 0.06$

TABLE II. Results for the lepton-flavor-universality-violating observables Q_4 and Q_5 . The first uncertainty is statistical and the second systematic.

	q^2 in GeV^2/c^2	Q_4	Q_5
	[1.00, 6.00]	$0.498 \pm 0.527 \pm 0.166$	$0.656 \pm 0.485 \pm 0.103$
	[0.10, 4.00]	$-0.723 \pm 0.676 \pm 0.163$	$-0.097 \pm 0.601 \pm 0.164$
	[4.00, 8.00]	$0.448 \pm 0.392 \pm 0.076$	$0.498 \pm 0.410 \pm 0.095$
f the Rencc	[14.18, 19.00]	$0.041 \pm 0.565 \pm 0.082$	$0.778 \pm 0.502 \pm 0.065$

B→K*µe Upper Limits

