A search for the muon to electron conversion at J-PARC: COMET Experiment

Y. Fujii
Monash University
on behalf of the COMET Collaboration
Windows on the Universe, Quy Nhon, Vietnam, 8th August 2018

Outline
• Physics Motivations
• COMET Experiment
• Summary
Charged Lepton Flavor Violation = new physics

Flavors are mixed through CKM matrix in the Standard Model,
Already confirmed \rightarrow Novel Prize in 2008

Flavors are mixed through PMNS matrix, Already confirmed (extension of SM) \rightarrow Novel Prize in 2015

Charged Lepton Flavor Violation
Strongly restricted in the Standard Model,
Not observed so far \rightarrow Discovery = New Physics
What & Why μ-e conversion?

- Muon to electron conversion in nuclei w/o neutrinos
 - $\sim O(10^{-54})$ in SM + ν-oscillation
 - Enhanced in many BSMs
 - Highly sensitive to New Physics
- Simple kinematics: $E_e = M_\mu - B_\mu - E_{\text{recoil}} \sim 105\text{MeV} \ @\text{Al}$
- Easy to get high statistics due to its long lifetime (880ns @Al)
- LHC, other CLFV searches, muon g-2, b-physics are complementary
- Current upper limit: 7×10^{-13} (90% C.L.) by SINDRUM II
μ-e conversion in BSM

- μ-e conversion appears in many physics models beyond the standard model (BSM)
 - Just requires an additional inter-mediating particle(s) that allow lepton flavor changing
- In most cases, branching ratio(BR) can be detectable
 - BR varies depending on the models and parameters
 - Detection = Discovery of new physics
 - Measurement = Specification of new physics!

Requirements

- **High statistics**
 - $>10^{18-20}$ of stopping muons are required
 - High intensity proton beam & Effective muon production/collection
- **Background suppression**
 - **Intrinsic BG**: Muon DIO (Decay In Orbit)
 - Good momentum resolution = Less multiple scattering
 - **Beam BG**: Radiative π capture, π/μ decay in flight, Antiproton, Proton leakage, etc.
 - Pulse beam + off-time measurement, strong pion suppression
 - Good extinction* factor ($<10^{-10}$)
 - **Other BG**: Cosmic ray
 - Adding veto detector

 \[\text{Extinction} = \frac{\text{Number of protons between 2 bunches}}{\text{Number of protons in a bunch}} \]
J-PARC

J-PARC = Japan Proton Accelerator Research Complex

Joint Project between KEK and JAEA

Materials and Life Science Experimental Facility

Hadron Beam Facility

MR Synchrotron (0.75 MW)*

Neutrino to Kamiokande

3 GeV Rapid Cycle Synch. (25 Hz, 1MW)

Linac (330m)

Nuclear Transmutation (Phase 2)
Proton Beam for COMET

- Bunched slow extraction with a 3.2(56) kW accelerator operation in Phase-I(Phase-II)
- Pulsed beam with 1.2μs intervals can be realized by emptying one of the two buckets in RCS
- Accelerate protons up to 8GeV in MR → Deliver them to COMET hall @ HD Facility
- Extinction has been recently measured to be 10^{-11}~10^{-12} in FX ($<6 \times 10^{-11}$ in SX)
Proton Beam for COMET

- Bunched slow extraction with a 3.2(56) kW accelerator operation in Phase-I(Phase-II)
- Pulsed beam with 1.2μs intervals can be realized by emptying one of the two buckets in RCS
- Accelerate protons up to 8GeV in MR → Deliver them to COMET hall @ HD Facility
- Extinction has been recently measured to be $10^{-11} \sim 10^{-12}$ in FX ($<6 \times 10^{-11}$ in SX)
COMET Overview

- **Aiming $O(10^{-17})$ sensitivity**
 - 10,000 times better than the current limit
- C-shaped muon transport solenoid
 - For suppress beam BG
- Additional curved Electron spectrometer
 - Suppress DIO+beam BG

Muon Stopping Target
- + beam blocker

Production Target + Pion Capture Solenoid
- ~5T, Large aperture to effectively collect low momentum π/μ

8GeV Proton Beam
- Muon Transport Solenoid ~3T
 - to select low momentum μ- and suppress π-

Electron Spectrometer
- ~1T
 - to select ~100MeV/c charged particles

Detector Solenoid
- ~1T
• Construct the first 90° of the muon transport solenoid
• Perform the \(\mu \)-\(e \) conversion search with a sensitivity of \(10^{-15} \) using CyDet
• Measure the beam directly using StrECAL as a Phase-II prototype detector
Muon Beam/Target

- Muon transported in a curved solenoid w/ a dipole field
 - Reduce pions which can produce high momentum secondaries
 - Momentum/charge selection
- Muons stopped inside the series of 200μm thin aluminum disks
 - Stopping rates are \(\sim 5 \times 10^{-4} (1.6 \times 10^{-3}) / \text{POT (=a Proton On Target)} \) in Phase-I (Phase-II)

Saddle type coil is put outside of each solenoid coil to generate dipole field.

Muon stopping target in Phase-I.
CyDet

- **Cylindrical Drift Chamber (CDC)**
 - Main tracker for Phase-I physics measurement
 - All stereo wires to reconstruct 3D trajectories
 - 20 layers with ~5k/15k sense/field wires
 - Gas mixture, He:iC₄H₁₀=90:10
 - \(\sigma_p \sim 200 \text{ keV/c} @105\text{MeV/c} \), is required
 - Detector has been constructed & performance study with cosmic-rays is ongoing

- **Cherenkov Trigger Hodoscope (CTH)**
 - Each module consists of an acrylic Cherenkov radiator and a plastic scintillator
 - 48 modules arranged both up/downstream
 - Require 4 hits coincidence to suppress the accidental trigger due to \(\gamma \) rays
 - **Better than 1 ns time resolution** is already obtained

StrWTracker

- **20/12μm** thin straw tubes with diameters of 10/5mm, operational in vacuum, for Phase-I/II
- Precise position/momentum measurement ($\sigma_x<200$μm, $\sigma_p=150-200$keV/c @105MeV/c e-)
- Mass production of phase-I Straw tubes was completed, ready for the detector construction!

ECAL

- Array of 2,000 LYSO crystals
- Fast decay time (~40ns), good energy resolution (<5% @105MeV/c e-), High density (7.2g/cm3)
- Performance study is almost completed, start purchasing the crystals
Phase-I Single Event Sensitivity

<table>
<thead>
<tr>
<th>Event selection</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Online event selection efficiency</td>
<td>0.9</td>
</tr>
<tr>
<td>DAQ efficiency</td>
<td>0.9</td>
</tr>
<tr>
<td>Track finding efficiency</td>
<td>0.99</td>
</tr>
<tr>
<td>Geometrical acceptance + Track quality cuts</td>
<td>0.18</td>
</tr>
<tr>
<td>Momentum window (ε_{mom})</td>
<td>0.93</td>
</tr>
<tr>
<td>Timing window ($\varepsilon_{\text{time}}$)</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>0.041</td>
</tr>
</tbody>
</table>

$$B(\mu^- + \text{Al} \rightarrow e^- + \text{Al}) = \frac{1}{N_\mu \cdot f_{\text{cap}} \cdot f_{\text{gnd}} \cdot A_{\mu-e}}$$

- Number of muons stopped inside targets
- Fraction of μ-e conversion to the ground state = 0.9
- Fraction of muons to be captured by Al target = 0.61

- 3×10^{-15} S.E.S. is achievable within ~150 days of DAQ time
 - Corresponding to $N_\mu = 1.5 \times 10^{16}$ (= 3×10^{19} POT)

$103.6 < p_e < 106.0$ MeV/c
$700 < t_e < 1170$ ns
Phase-I Backgrounds

<table>
<thead>
<tr>
<th>Type</th>
<th>Background</th>
<th>Estimated events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>Muon decay in orbit</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Radiative muon capture</td>
<td>0.0019</td>
</tr>
<tr>
<td></td>
<td>Neutron emission after muon capture</td>
<td>< 0.001</td>
</tr>
<tr>
<td></td>
<td>Charged particle emission after muon capture</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Prompt Beam</td>
<td>* Beam electrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Muon decay in flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Pion decay in flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Other beam particles</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All (*) Combined</td>
<td>≤ 0.0038</td>
</tr>
<tr>
<td></td>
<td>Radiative pion capture</td>
<td>0.0028</td>
</tr>
<tr>
<td></td>
<td>Neutrons</td>
<td>~ 10^{-9}</td>
</tr>
<tr>
<td>Delayed Beam</td>
<td>Beam electrons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muon decay in flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pion decay in flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiative pion capture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-proton induced backgrounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cosmic rays†</td>
<td>≤ 0.01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.032</td>
</tr>
</tbody>
</table>

† This estimate is currently limited by computing resources.

- Normalized to a 3×10^{-15} of S.E.S., assuming extinction factor $= 3 \times 10^{-11}$
- Background is almost negligible
- To be measured directly in Phase-I beam measurement

COMET Phase-II

• In comparison with Phase-I...
 • Beam power: 3.2kW \rightarrow 56kW (\times18)
 ➥ Longer muon transportation enables to use more powerful proton beam
 • Muon stopping rate (per POT): $5 \times 10^{-4} \rightarrow 1.6 \times 10^{-3}$ (\times3)
 ➥ Replacement of production target from Graphite to Tungsten, longer transportation solenoid
 • Total signal acceptance: 0.04 \rightarrow 0.06 (\times1.5)
 ➥ Larger detector acceptance (covers the most of forward direction)
 • Momentum resolution will be improved: $\sim 200\text{keV/c} \rightarrow 160-180\text{keV/c}$ ($\sim 10\%$)
 ➥ Less materials in tracker: CDC \rightarrow thin straw tube tracker in vacuum
Phase-II Sensitivity & Backgrounds

- Assuming 0.5 year of DAQ time (20% longer than in Phase-I)
 - Total statistical improvement is calculated to be 100!
 - 3×10^{-17} S.E.S. is achievable in 0.5 year, or 2.7×10^{-17} in 200 days
- Nevertheless, BG rate will be low enough based on the simulation study

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Background Rate per μ^- stop</th>
<th>Background Rate per POT</th>
<th>Background Rate per second</th>
<th>Total Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic</td>
<td>DIO</td>
<td>6.20×10^{-20}</td>
<td>9.92×10^{-23}</td>
<td>4.31×10^{-9}</td>
<td>0.068</td>
</tr>
<tr>
<td></td>
<td>RMC</td>
<td>3.73×10^{-31}</td>
<td>6.01×10^{-34}</td>
<td>2.61×10^{-20}</td>
<td>4.10×10^{-13}</td>
</tr>
<tr>
<td>Delayed</td>
<td>RPC</td>
<td>–</td>
<td>1.73×10^{-27}</td>
<td>7.51×10^{-14}</td>
<td>1.18×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>Beam</td>
<td>–</td>
<td>1.47×10^{-24}</td>
<td>6.39×10^{-11}</td>
<td>1.00×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>Stopped \bar{p}</td>
<td>–</td>
<td>4.34×10^{-22}</td>
<td>1.89×10^{-8}</td>
<td>0.296</td>
</tr>
<tr>
<td></td>
<td>π^- from \bar{p}</td>
<td>–</td>
<td>1.95×10^{-30}</td>
<td>8.49×10^{-17}</td>
<td>1.33×10^{-9}</td>
</tr>
<tr>
<td>Prompt</td>
<td>RPC</td>
<td>–</td>
<td>1.82×10^{-24}</td>
<td>7.91×10^{-11}</td>
<td>1.24×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>Beam</td>
<td>–</td>
<td>2.80×10^{-24}</td>
<td>1.22×10^{-10}</td>
<td>1.91×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>π^- from \bar{p}</td>
<td>–</td>
<td>3.56×10^{-29}</td>
<td>1.55×10^{-15}</td>
<td>2.43×10^{-8}</td>
</tr>
<tr>
<td>Cosmics</td>
<td>–</td>
<td>–</td>
<td>1.87×10^{-8}</td>
<td>–</td>
<td>0.294</td>
</tr>
<tr>
<td>Total</td>
<td>–</td>
<td>–</td>
<td>4.22×10^{-8}</td>
<td>–</td>
<td>0.662</td>
</tr>
</tbody>
</table>

\leftarrow DIO in signal region
\leftarrow Electron from Radiative Muon Capture
\leftarrow Anti-proton rate is estimated conservatively
\leftarrow Electron rate from cosmic-rays is estimated conservatively
Summary

• CLFV processes are predicted by many BSMs while they’re strongly suppressed in the Standard Model
• COMET aims to search for μ-e conversion with unprecedented S.E.S. of 3×10^{-15} ($< 10^{-16}$) in Phase-I (Phase-II) @J-PARC
 • There is a huge discovery potential
• Phase-I experiment has been already approved by J-PARC PAC
 • All detectors are being prepared on schedule
 • Facility/beam-line are under construction in parallel
• Detector will be ready in 2019 for Phase-I, start soon after completing the beam-line construction
• Phase-II will follow Phase-I to reach 100 times better sensitivity than in Phase-I
 • Almost all R&Ds for Phase-II will be completed in Phase-I
 • Further information can be found at http://comet.kek.jp/Introduction.html

⇒ Stay tuned!
Backup