Open problems of the Skyrme model and the proton radius puzzle

Thomas Steingasser

Ludwig-Maximilians-Universität München

August 1, 2018

Thomas Steingasser Open problems of the Skyrme model and the proton radius puzzl

Overview

Overview

- Baryons in the framework of the Skyrme model
- Suggested corrections
- Proton radius puzzle
- Suggested solutions

The Skyrme model Suggested corrections

The Skyrme model

QCD: For low energies effectively described by a theory of $\mathsf{SU}(2)\text{-fields}$

$$\begin{split} S[U] &= \int d^4 x \; \frac{f_\pi^2}{4} \mathrm{tr} \big(\partial_\mu U \partial^\mu U^\dagger \big) + m_\pi^2 f_\pi^2 \big(\mathrm{tr}(U) - 2 \big) + \\ &+ \frac{1}{32e^2} \mathrm{tr} \big([\partial_\mu U, \partial_\nu U^\dagger] [\partial^\mu U, \partial^\nu U^\dagger] \big) \end{split}$$
with $U(x) &= \exp\left(\frac{i}{f_\pi} \pi^a(x) \tau_a\right)$

The Skyrme model Suggested corrections

Skyrmions

Soliton of the Skyrme model ("Skyrmion"):

$$U_{\mathcal{S}}(x) = \exp\bigl(i\frac{x^{i}}{|x|}\tau_{i}\cdot F(r)\bigr)$$

 \rightarrow localized by function F(r), minimizing the energy

Rotating Skyrmion

Baryons correspond to "rotating" Skyrmions:

$$U_{\mathcal{S}}(x) \rightarrow U_{rot}(t,x) = A^{\dagger}(t)U_{\mathcal{S}}(x)A(t) = U_{\mathcal{S}}(R_{\mathcal{A}}(t)x)$$

With Cayley-Klein parameters $A(t) = a^0(t)\mathbb{1} + ia^i(t)\tau_i$ with $\sum_{b=0}^{3} (a^b)^2 = 1$, the classical kinetic action becomes

$$S_{kin}[a] = \int dt \; 2\lambda \cdot \sum_{b=0}^{3} (\dot{a}^b)^2, \;\; \lambda pprox rac{53}{e^3 f_\pi}$$

The Skyrme model Suggested corrections

Quantization

$$\rightarrow$$
 Hamiltonian $\hat{H} = M_S - \frac{1}{8\lambda}\Delta_{S^3}$ with eigenfunctions $|i,j;n\rangle \doteq (a^i + ia^j)^n$

$$\Rightarrow E_{ijn} = \langle i, j; n | \hat{H} | i, j; n \rangle = M_{S} + \frac{n(n+2)}{8\lambda}$$

n=1 corresponds to nucleons:

$$|p\uparrow\rangle = \frac{1}{\pi}(a^{1} + ia^{2}) \qquad |p\downarrow\rangle = -\frac{1}{\pi}(a^{0} - ia^{3})$$
$$|n\uparrow\rangle = \frac{1}{\pi}(a^{0} + ia^{3}) \qquad |n\downarrow\rangle = -\frac{1}{\pi}(a^{1} - ia^{2})$$

The Skyrme model Suggested corrections

Experimental data

Quantity	Prediction (this model)	Experiment
M _N	938.9 MeV (input)	938.9 MeV
Ma	1232 MeV (input)	1232 MeV
m_{π}	138 MeV (input)	138 MeV
F_{π}	108 MeV	186 MeV
$\langle r^2 \rangle_{I=0}^{1/2}$	0.68 fm	0.72 fm
$\langle r^2 \rangle_{I=1}^{1/2}$	1.04 fm	0.88 fm
$\langle r^2 \rangle_{M,I=0}^{1/2}$	0.95 fm	0.81 fm
$\langle r^2 \rangle_{M,l=1}^{1/2}$	1.04 fm	0.80 fm
μ_{p}	1.97	2.79
μ_n	-1.24	-1.91
$\frac{\mu_{\rm p}}{\mu_{\rm n}}$	1.59	1.46
84	0.65	1.23
8TNN	11.9	13.5
8TNA	17.8	20.3
HN3	2.3	3.3
σ	49 MeV	$36 \pm 20 \text{ MeV}$

Source: G. S. Adkins, C. R. Nappi, Nucl. Phys. B 233, 109 (1984)

Thomas Steingasser

Open problems of the Skyrme model and the proton radius puzzl

The Skyrme model Suggested corrections

Suggested corrections

Deformation of the Skyrmion

- due to relativistic effects caused by the rotation
- as a result of "centrifugal forces"

Correction of the mass

• due to quantum effects

The Skyrme model Suggested corrections

Relativistic rotation: idea

H. Hata and T. Kikuchi (2010): Equations of motion of the rotation ensure those of the original field theory \Rightarrow higher order terms in R(t):

$$U_{rot}(x,t) = U_{S}(y(t,x))$$

$$y = (1 + A(r)(\dot{R}R^{-1}x)^{2} + r^{2}B(r)Tr(R^{-1}\dot{R})^{2})R^{-1}x + r^{2}C(r)(R^{-1}\dot{R})^{2}R^{-1}x + \dots$$

Relativistic rotation: numerical results

	Prediction (this paper)	Prediction (Ref. [3])	Experiment
$\overline{f_{\pi}}$	125 MeV	108 MeV	186 MeV
$\overline{\langle r^2 \rangle_{I=0}^{1/2}}$	0.59 fm	0.68 fm	0.81 fm
$\langle r^2 \rangle_{I=1}^{1/2}$	1.17 fm	1.04 fm	0.94 fm
$\langle r^2 \rangle_{M,I=0}^{1/2}$	0.85 fm	0.95 fm	0.82 fm
$\langle r^2 \rangle_{M,I=1}^{1/2}$	1.17 fm	1.04 fm	0.86 fm
μ_p	1.65	1.97	2.79
μ_n	-0.99	-1.24	-1.91
$ \mu_p/\mu_n $	1.67	1.59	1.46
g_A	0.58	0.65	1.24

Remark: [3] refers to the results of Adkins & Nappi

Source: H. Hata, T. Kikuchi, Phys. Rev. D 82, 025017 (2010) [arXiv:hep-th/1002.2464]

The Skyrme model Suggested corrections

Spinning Skyrmion: idea

Battye, Krusch, Sutcliffe (2005): Allow the Skyrmion to deform and break spherical symmetry by the ansatz

$$U_{S}(x) \rightarrow U_{rot}(t, r, \phi, z) = \psi_{3} \mathbb{I} + i\psi_{2}\tau_{3} + i\psi_{1}(\cos(\phi + \omega t)\tau_{1} + \sin(\phi + \omega t)\tau_{2})$$

with $\psi_i = \psi_i(\rho, z)$, $|\vec{\psi}| = 1$ and $\vec{\psi} \to (0, 0, 1)$ as $\rho^2 + z^2 \to \infty$ Minimizing energy \to condition $\frac{e^2 F_{\pi}^2}{4} \omega^2 \leq m_{\pi}^2$ (production of pions)

The Skyrme model Suggested corrections

Spinning Skyrmion: numerical results

Source: R. Battye, S.Krusch, P. Sutcliffe, Phys.Lett. B626 (2005) 120-126

Mass Correction due to Casimir energy

Idea: Change in mode functions by presence of Skyrmion \Rightarrow change in vacuum energy \Rightarrow change of rest mass Moussallam (1992): Taking into account 6th-order terms one finds

$$M_N = M_{cl} + M_{Cas} + M_{ct} = 1103 MeV$$

Remark: Here F_{π} was used as input parameter

Proton radius puzzle Suggested Solutions

Proton radius puzzle

Problem: Value of the proton charge radius obtained by measurements involving muonic hydrogen differ significantly from earlier results

 \rightarrow cannot be explained by previous corrections

Source: J. Krauth, K.Schuhmann et al., arXiv:1706.00696v2 (2017)

Proton radius puzzle Suggested Solutions

Influence of extra dimensions

Dahia, Lemos (2016): *n* small extra dimensions \rightarrow small scale gravitational potential $\propto \frac{1}{R^{n+1}} >> \frac{1}{R}$ for small enough *R*

 \Rightarrow energy level of muonic hydrogen shifted by

$$\delta E_{S}^{g} \approx -\gamma_{n} \frac{G_{n} m_{\rho} m_{\mu}}{\sigma_{n-2}} |\psi(0)|^{2} (1 - \frac{3r_{\rho}}{2a_{o}})$$

 \rightarrow number and size of extra dimensions can be chosen in agreement with the data and upper limits from different experiments

Proton radius puzzle Suggested Solutions

Electrophobic scalar: idea

D. Tucker-Smith, I. Yavin (2010): add new field ϕ interacting with the fermions via

 $\mathcal{L}_{int} \propto \mathsf{g}_{\mathsf{f}} \phi \bar{\mathsf{f}} \mathsf{f}$

 \Rightarrow change in the energy of the 2S-2P-transition of muonic hydrogen $\delta E_{\phi} \propto \frac{\alpha}{a_{\mu}^3} \frac{g_{\mu}g_{\rho}}{e^2 m_{\phi}^2} f(a_{\mu}m_{\phi}) \leftrightarrow \delta E_{\rho} \propto \frac{\alpha}{a_{\mu}^3} \langle r_{\rho}^2 \rangle$

Side effect: Also capable of explaining the $(g-2)_{\mu}$ puzzle!

Electrophobic scalar: numerical results

Y. Liu, D. McKeen, G. Miller (2016): Taking into account numerous experiments constrains m_{ϕ} as well as corresponding coupling contants:

$m_{\phi} \ ({\rm MeV})$	$ \epsilon_e $	ϵ_{μ}	ϵ_p	ϵ_n
0.13	$< 2.0 \times 10^{-6}$	$1.29(18) \times 10^{-3}$	3.0×10^{-3}	-2.0×10^{-3} to 2.8×10^{-7}
1	$< 2.6 \times 10^{-6}$	$1.30(18) \times 10^{-3}$	$1.60(37) \times 10^{-3}$	-1.7×10^{-3} to 2.0×10^{-4}
10	$< 7.6 \times 10^{-8}$	$1.40(20) \times 10^{-3}$	$2.37(54) \times 10^{-2}$	-2.9×10^{-2} to 9.1×10^{-3}
73	$< 9.1 \times 10^{-8}$ 3.3×10^{-6} to 1.8×10^{-3}	$1.96(27) \times 10^{-3}$	0.39	-0.29 to 5.6×10^{-4}

Remark: Here the convention $\epsilon_f = \frac{\delta f}{e}$ is used Source: Y. Liu, D. McKeen, G. Miller Phys. Rev. Lett. 117, 101801 (2016) [arXiv:hep-th/1002.2464]

Gravitoweak unification

R. Onofrio (2013): Weak interactions as short-distance manifestations of gravity?

 \rightarrow main idea: coupling strength $G_F \propto G_N^{ren}$ on small enough scales, effectve potential interpolating these regimes:

$$V_{eff}(r) = \frac{-G_N m_1 m_2}{r} \left[1 + \left(\frac{G_N^{ren}}{G_N} - 1\right)e^{-r/\Lambda_P^{ren}}\right]$$

 \rightarrow shift in the energy levels of the muonic hydrogen estimated to be of right order of magnitude