Open problems of the Skyrme model and the proton radius puzzle

Thomas Steingasser

Ludwig-Maximilians-Universität München
August 1, 2018

Overview

- Baryons in the framework of the Skyrme model
- Suggested corrections
- Proton radius puzzle
- Suggested solutions

The Skyrme model

QCD: For low energies effectively described by a theory of SU(2)-fields

$$
\begin{gathered}
S[U]=\int d^{4} x
\end{gathered} \frac{f_{\pi}^{2}}{4} \operatorname{tr}\left(\partial_{\mu} U \partial^{\mu} U^{\dagger}\right)+m_{\pi}^{2} f_{\pi}^{2}(\operatorname{tr}(U)-2)+.
$$

with $U(x)=\exp \left(\frac{i}{f_{\pi}} \pi^{a}(x) \tau_{a}\right)$

Skyrmions

Soliton of the Skyrme model ("Skyrmion"):

$$
U_{S}(x)=\exp \left(i \frac{x^{i}}{|x|} \tau_{i} \cdot F(r)\right)
$$

\rightarrow localized by function $F(r)$, minimizing the energy

Rotating Skyrmion

Baryons correspond to "rotating" Skyrmions:

$$
U_{S}(x) \rightarrow U_{\text {rot }}(t, x)=A^{\dagger}(t) U_{S}(x) A(t)=U_{S}\left(R_{A}(t) x\right)
$$

With Cayley-Klein parameters $A(t)=a^{0}(t) \mathbb{1}+i a^{i}(t) \tau_{i}$ with $\sum_{b=0}^{3}\left(a^{b}\right)^{2}=1$, the classical kinetic action becomes

$$
S_{k i n}[a]=\int d t 2 \lambda \cdot \sum_{b=0}^{3}\left(\dot{a}^{b}\right)^{2}, \quad \lambda \approx \frac{53}{e^{3} f_{\pi}}
$$

Quantization

\rightarrow Hamiltonian $\hat{H}=M_{S}-\frac{1}{8 \lambda} \Delta_{S^{3}}$ with eigenfunctions
$|i, j ; n\rangle \doteq\left(a^{i}+i a^{j}\right)^{n}$

$$
\Rightarrow E_{i j n}=\langle i, j ; n| \hat{H}|i, j ; n\rangle=M_{S}+\frac{n(n+2)}{8 \lambda}
$$

$\mathrm{n}=1$ corresponds to nucleons:

$$
\begin{array}{ll}
|p \uparrow\rangle=\frac{1}{\pi}\left(a^{1}+i a^{2}\right) & |p \downarrow\rangle=-\frac{1}{\pi}\left(a^{0}-i a^{3}\right) \\
|n \uparrow\rangle=\frac{1}{\pi}\left(a^{0}+i a^{3}\right) & |n \downarrow\rangle=-\frac{1}{\pi}\left(a^{1}-i a^{2}\right)
\end{array}
$$

Experimental data

Quantity	Prediction (this model)	Experiment
M_{N}	938.9 MeV (input)	938.9 MeV
M_{1}	1232 MeV (input)	1232 MeV
m_{r}	138 MeV (input)	138 MeV
F_{π}	108 MeV	186 MeV
$\left\langle r^{2}\right\rangle_{i=1}^{1 / 2}$	0.68 fm	0.72 fm
$\left\langle r^{2}\right\rangle_{i=1}^{1 / 2}$	1.04 fm	0.88 fm
$\left(r^{2}\right)^{1 / 2}, I=0$	0.95 fm	0.81 fm
$\left\langle r^{2}\right\rangle_{M . l}^{1 / 2}$	1.04 fm	0.80 fm
μ_{p}	1.97	2.79
μ_{n}	-1.24	-1.91
$\left\|\frac{\mu_{p}}{\mu_{n}}\right\|$	1.59	1.46
$g_{\text {A }}$	0.65	1.23
$g_{\text {miN }}$	11.9	13.5
$g_{\pi N \Delta}$	17.8	20.3
$\mu_{\text {N } ~}$	2.3	3.3
σ	49 MeV	$36 \pm 20 \mathrm{MeV}$

Source: G. S. Adkins, C. R. Nappi, Nucl. Phys. B 233, 109 (1984)

Suggested corrections

Deformation of the Skyrmion

- due to relativistic effects caused by the rotation
- as a result of "centrifugal forces"

Correction of the mass

- due to quantum effects

Relativistic rotation: idea

H. Hata and T. Kikuchi (2010): Equations of motion of the rotation ensure those of the original field theory
\Rightarrow higher order terms in $R(t)$:

$$
\begin{aligned}
U_{r o t}(x, t) & =U_{S}(y(t, x)) \\
y & =\left(1+A(r)\left(\dot{R} R^{-1} x\right)^{2}+r^{2} B(r) \operatorname{Tr}\left(R^{-1} \dot{R}\right)^{2}\right) R^{-1} x+ \\
& +r^{2} C(r)\left(R^{-1} \dot{R}\right)^{2} R^{-1} x+\ldots
\end{aligned}
$$

Relativistic rotation: numerical results

	Prediction (this paper)	Prediction (Ref. [3])	Experiment
f_{π}	125 MeV	108 MeV	186 MeV
$\left\langle r^{2}\right\rangle_{I=0}^{1 / 2}$	0.59 fm	0.68 fm	0.81 fm
$\left\langle r^{2}\right\rangle_{I=1}^{1 / 2}$	1.17 fm	1.04 fm	0.94 fm
$\left\langle r^{2}\right\rangle_{M, I=0}^{1 / 2}$	0.85 fm	0.95 fm	0.82 fm
$\left\langle r^{2}\right\rangle_{M, I=1}^{1 / 2}$	1.17 fm	1.04 fm	0.86 fm
μ_{p}	1.65	1.97	2.79
μ_{n}	-0.99	-1.24	-1.91
$\left\|\mu_{p} / \mu_{n}\right\|$	1.67	1.59	1.46
g_{A}	0.58	0.65	1.24

Remark: [3] refers to the results of Adkins \& Nappi
Source: H. Hata, T. Kikuchi, Phys. Rev. D 82, 025017 (2010) [arXiv:hep-th/1002.2464]

Spinning Skyrmion: idea

Battye, Krusch, Sutcliffe (2005): Allow the Skyrmion to deform and break spherical symmetry by the ansatz

$$
\begin{aligned}
U_{S}(x) \rightarrow U_{\text {rot }}(t, r, \phi, z)= & \psi_{3} \mathbb{I}+i \psi_{2} \tau_{3}+ \\
& +i \psi_{1}\left(\cos (\phi+\omega t) \tau_{1}+\sin (\phi+\omega t) \tau_{2}\right)
\end{aligned}
$$

with $\psi_{i}=\psi_{i}(\rho, z),|\vec{\psi}|=1$ and $\vec{\psi} \rightarrow(0,0,1)$ as $\rho^{2}+z^{2} \rightarrow \infty$ Minimizing energy \rightarrow condition $\frac{e^{2} F_{\pi}^{2}}{4} \omega^{2} \leq m_{\pi}^{2}$ (production of pions)

Spinning Skyrmion: numerical results

$$
m_{\pi}=138 \mathrm{MeV}
$$

Mass Correction due to Casimir energy

Idea: Change in mode functions by presence of Skyrmion \Rightarrow change in vacuum energy \Rightarrow change of rest mass Moussallam (1992): Taking into account $6^{\text {th }}$-order terms one finds

$$
M_{N}=M_{c l}+M_{C a s}+M_{c t}=1103 \mathrm{MeV}
$$

Remark: Here F_{π} was used as input parameter

Proton radius puzzle

Problem: Value of the proton charge radius obtained by measurements involving muonic hydrogen differ significantly from earlier results
\rightarrow cannot be explained by previous corrections

Source: J. Krauth, K.Schuhmann et al., arXiv:1706.00696v2 (2017)

Influence of extra dimensions

Dahia, Lemos (2016): n small extra dimensions \rightarrow small scale gravitational potential $\propto \frac{1}{R^{n+1}} \gg \frac{1}{R}$ for small enough R
\Rightarrow energy level of muonic hydrogen shifted by

$$
\delta E_{S}^{g} \approx-\gamma_{n} \frac{G_{n} m_{\rho} m_{\mu}}{\sigma_{n-2}}|\psi(0)|^{2}\left(1-\frac{3 r_{p}}{2 a_{o}}\right)
$$

\rightarrow number and size of extra dimensions can be chosen in agreement with the data and upper limits from different experiments

Electrophobic scalar: idea

D. Tucker-Smith, I. Yavin (2010): add new field ϕ interacting with the fermions via

$$
\mathcal{L}_{i n t} \propto g_{f} \phi \bar{f} f
$$

\Rightarrow change in the energy of the $2 S-2 P$-transition of muonic hydrogen $\delta E_{\phi} \propto \frac{\alpha}{a_{\mu}^{3}}{ }^{\frac{g_{\mu}}{2} m_{\rho}^{2}} f\left(a_{\mu} m_{\phi}\right) \leftrightarrow \delta E_{p} \propto \frac{\alpha}{a_{\mu}^{3}}\left\langle r_{p}^{2}\right\rangle$

Side effect: Also capable of explaining the $(g-2)_{\mu}$ puzzle!

Electrophobic scalar: numerical results

Y. Liu, D. McKeen, G. Miller (2016): Taking into account numerous experiments constrains m_{ϕ} as well as corresponding coupling contants:

$m_{\phi}(\mathrm{MeV})$	$\left\|\epsilon_{\mathrm{e}}\right\|$	ϵ_{μ}	ϵ_{p}	ϵ_{n}
0.13	$<2.0 \times 10^{-6}$	$1.29(18) \times 10^{-3}$	3.0×10^{-3}	-2.0×10^{-3} to 2.8×10^{-7}
1	$<2.6 \times 10^{-6}$	$1.30(18) \times 10^{-3}$	$1.60(37) \times 10^{-3}$	-1.7×10^{-3} to 2.0×10^{-4}
10	$<7.6 \times 10^{-8}$	$1.40(20) \times 10^{-3}$	$2.37(54) \times 10^{-2}$	-2.9×10^{-2} to 9.1×10^{-3}
73	$<9.1 \times 10^{-8}$	$1.96(27) \times 10^{-3}$	0.39	-0.29 to 5.6×10^{-4}

Remark: Here the convention $\epsilon_{f}=\frac{g_{f}}{e}$ is used
Source: Y. Liu, D. McKeen, G. Miller Phys. Rev. Lett. 117, 101801 (2016) [arXiv:hep-th/1002.2464]

Gravitoweak unification

R. Onofrio (2013): Weak interactions as short-distance manifestations of gravity?
\rightarrow main idea: coupling strength $G_{F} \propto G_{N}^{r e n}$ on small enough scales, effectve potential interpolating these regimes:

$$
V_{e f f}(r)=\frac{-G_{N} m_{1} m_{2}}{r}\left[1+\left(\frac{G_{N}^{r e n}}{G_{N}}-1\right) e^{-r / \Lambda_{P}^{r e n}}\right]
$$

\rightarrow shift in the energy levels of the muonic hydrogen estimated to be of right order of magnitude

