Searches for new resonances in final states with leptons at CMS

Anshul Kapoor IISER Pune

on behalf of the CMS Collaboration

25th Rencontres du Vietnam Windows on the Universe Qui Nhơn (Vietnam)

August 8th, 2018

Searching is all about strategy

The same particle, when produced, can result in varied topologies based on decay, lifetime, branching ratios etc.

Searching is all about strategy

Depending on physics, background composition, effective cross section and other aspects of interest, one can use different strategies to look for the same particle.

Resonances

Searches with leptons

New particles beyond the **standard model(SM)** may show up as resonances at the TeV scale in: 1) Sequential-SM with SM like couplings 2) Models of extra dimensions with KK excitations 3) Grand unified theories **Charged Resonances Neutral Resonances** 1) W' \rightarrow lu 3) $Z' \rightarrow II$ 10.1007/JHEP06(2018)128 10.1007/JHEP06(2018)120 2) W' → τυ 4) Z' \rightarrow ee arXiv:1807.11421 **CMS-PAS-EXO-18-006** 5) $X \rightarrow e\mu$ 6) Multileptons 10.1007/JHEP04(2018)073 **CMS-PAS-EXO-18-005**

jets.

$W' \rightarrow lv$

JHEP 06 (2018) 128

- W'→ lv:
 ~36 fb⁻¹ (2016) data
- Channels: $W' \rightarrow ev$, $W' \rightarrow \mu v$

Dominant background $W \rightarrow l \upsilon$ Other backgrounds $t\bar{t}$, tW, WW, WZ, Z/ γ^*

- Search for bumps in $M_{\scriptscriptstyle T}$ distribution

$$M_{\rm T} = \sqrt{2p_{\rm T}^{\ell}} p_{\rm T}^{\rm miss} \left(1 - \cos[\Delta\phi(\ell, \vec{p}_{\rm T}^{\rm miss})]\right)$$

$W' \rightarrow lv$

35.9 fb⁻¹ (13 TeV

JHEP 06 (2018) 128

- CMS () 10 GeV Dibosor W' M=1.8 TeV Syst. uncertainties 10 10 Data/Bkg 0.5 2000 2500 $M_{\pm}(GeV)$ 35.9 fb⁻¹ (13 TeV) 10 CMS Events/(40 GeV) Syst. uncertainties Data 10 10 10 Data/Bkg 2500 3000 3500 4000 2000 $M_{T}(GeV)$
- W' \rightarrow ev : e p_T > 130 GeV, p_T^{miss} > 150 GeV W' \rightarrow µv : µ p_T > 53 GeV $\Delta \Phi(p_T, p_T^{miss})$ >2.5 (back-to-back requirement) 0.4< p_T/p_T^{miss} < 1.5

No observed excess above SM Lower limits placed on mass of the W': m(W'_{SSM})> 5.2 TeV Model independent limits as a function of minimum M_T for X→lv

Rencontres Du Vietnam, Anshul Kapoor, IISER Pune

$W' \rightarrow \tau \upsilon$

35.9 fb⁻¹ (13 TeV) W+iets

Z(vv)+jets

Multiiet

Sinale t Z(ll)+jets Diboson

Data

- - SSM W' 0.6 TeV

SSM W' 1 0 To

arXiv:1807.11421 (submited to PLB)

 $\bar{\nu}_{\tau}$

W'

Ge

/ents/80

10

10

ATA MO 1.5

1000

500

1500

1000 1200

1400

2000

2500

- W' → τυ ~36 fb⁻¹ (2016) data
- $\tau p_{\tau} > 80 \text{ GeV}, p_{\tau}^{\text{miss}} > 200 \text{ GeV}$ $\Delta \Phi(p_T, p_T) > 2.4$ (back-to-back requirement) $0.7 < p_T/p_T^{miss} < 1.3$
- **Dominant background : W+jets**
- Search in M_{T}

2000

1800

M^{min}_T (GeV)

$Z' \rightarrow II$

CMS PAS EXO-18-006

 Z'→ee : ~41 fb⁻¹ (2017) data

> **P_T > 35 GeV** for both electrons No opposite sign requirement due to high charge misidentification backgrounds for TeV electrons

<u>Dominant background :</u> Ζ/γ* <u>Other backgrounds :</u> tī, tW, WW, WZ, ZZ

• Statistically combined with Z'->ll : ~36 fb⁻¹ (2016) data Excluded Spin-1 : $m(Z'_{\psi}) > 4.1 \text{ TeV}, m(Z'_{SSM}) > 4.7 \text{ TeV}$

- Model Independent search for heavy resonances with flavor violating decays
- p_T >35 GeV for electron
 p_T >53 GeV for muon
 p_T^{miss} >50 GeV, M_{eµ} > 200 GeV
- <u>Backgrounds</u> : tt, tW, WW, WZ

าท	Mass range (GeV)	$m_{\mathrm{e}\mu}\!<\!500$	$500\!<\!m_{{\rm e}\mu}\!<\!1000$	$1000\!<\!m_{{\rm e}\mu}\!<\!1500$	$m_{\mathrm{e}\mu}\!>\!1500$
	Jet \rightarrow e misidentification	3601	82.8	2.92	0.849
> 200 GeV	$ m W\gamma$	2462	56.2	2.76	0.562
	Drell-Yan	2638	5.31	0.343	0.0145
W, WW, WZ	Single t	9930	141	2.81	0.178
	WW, WZ, ZZ	11126	239	13.0	2.03
	tī	96754	971	18.5	1.01
SM BACKGROUND —	Total background	126513	1495	40.3	4.64
	Systematic uncertainty	23495	420	13.5	1.28
	Data	123150	1426	41	4

Rencontres Du Vietnam, Anshul Kapoor, IISER Pune

7'

RPV SUSY

QBH

Summary

- CMS collaboration has been extensively looking for new physics in leptonic final states using the data collected in 2016 and 2017
- New particles beyond the standard model(SM) may show up as resonances at the TeV scale
- Analyses searching for W'_{SSM}, Z'_{SSM}, Quantum Black Holes, R-Parity Violating SUSY, Vector Like Leptons exploiting leptonic resonances were presented.
- No significant excess above SM has been observed and lower limits have been placed on the mass of these resonances / new particles.

BACKUP

 $W' \rightarrow lv$

	$M_{\rm T} > 1 {\rm TeV}$	$M_{\rm T} > 2 {\rm TeV}$	$M_{\rm T} > 3 {\rm TeV}$	$M_{\rm T} > 4 {\rm TeV}$
Electron data	200	2	0	0
Sum of SM backgrounds	213 ± 28	5.00 ± 0.96	0.260 ± 0.077	0.0163 ± 0.0078
SSM W' M = $1.8 \mathrm{TeV}$	5040 ± 770	25.9 ± 5.8	0.43 ± 0.44	0 ± 0
M = 2.4 TeV	1180 ± 200	560 ± 100	1.14 ± 0.44	0 ± 0
M = 3.8 TeV	53 ± 13	40 ± 11	23.9 ± 8.4	0.44 ± 0.25
M = 4.2 TeV	23.3 ± 7.3	17.6 ± 6.5	11.8 ± 5.4	3.4 ± 2.2
Muon data	208	4	0	0
Sum of SM backgrounds	217 ± 20	6.0 ± 1.2	0.27 ± 0.21	0.02 ± 0.02
SSM W' M = 1.8 TeV	5345 ± 530	96 ± 14	2.5 ± 1.2	0 ± 0
M = 2.4 TeV	1282 ± 120	577 ± 85	2.4 ± 1.2	0.10 ± 0.05
M = 3.8 TeV	57 ± 6	42 ± 6	24 ± 12	2 ± 1
M = 4.2 TeV	25 ± 3	19 ± 3	12 ± 6	3.6 ± 1.8

 $W' \rightarrow lv$

 $W' \rightarrow lv$

arXiv:1807.11421 (submited to PLB)

W' → τυ

arXiv:1807.11421 (submited to PLB)

Low mass $Z' \rightarrow \mu\mu$

CMS PAS EXO-18-006

- Z->Ζ'μμ->μμμμ : ~77 fb⁻¹ (2017) + (2016) data
- Muon p_T > 20,10 GeV for leading 2 muons The muon pair farthest from SM Z boson mass is the Z' candidate

