Higgs physics at Circular Electron-Positron Collider

Yaquan Fang (IHEP), <u>Zhijun Liang</u> (IHEP) on behalf of the team of CEPC Higgs physics Workshop on the Circular Electron-Positron Collider 25th Anniversary of the Rencontres du Vietnam August 5-11, 2018

Higgs physics at CEPC (Y. Fang, IHEP)

Higgs related physics at e⁺e⁻ collider

- With the increase of the energy, different Higgs related physics can be explored at e⁺e⁻ collider.
- With the energy around 240 GeV, ZH as well as ww/zz fusion can be intensively studied.
 - the dominant production is from HZ, the WW/ZZ fusions contribute a few percent of the total cross-section.

SM Higgs decay branching ratio, Bkg process

✓ e^+e^- collider provides a good opportunity to measure the jj, invisible decay of Higgs. ✓ For 5 ab⁻¹ data with CEPC, 1M Higgs, 10M Z, 100M W are produced.

Higgs physics at CEPC (Y. Fang, IHEP)

e e⁺ Higgs Factory

- ✓ A CEPC (phase I)+ Super proton-proton
 Collider (SPPC) was proposed
- ✓ Ecm ~240-250 GeV, Lum 5 ab⁻¹ for 10 years

Table 2. Key characteristic/performance of a conceptual CEPC detector.

(In the second s	$\text{TED}(1,(\alpha\pi^{(1)}))$ $\text{TETD}(\alpha\alpha\pi^{(1)})$
Geometry acceptance	TPC (97%), FTD (99.5%)
Tracking efficiency	$\sim 100\%$ within geometry acceptance
Tracking performance	$\Delta(1/p_T) \sim 2 \times 10^{-5} \ (1/\text{GeV})$
ECAL intrinsic energy resolution	$16\%/\sqrt{E} \oplus 1\%$ (GeV)
HCAL intrinsic energy resolution	$60\%/\sqrt{E} \oplus 1\%$ (GeV)
Jet energy resolution	3-4%
Impact parameter resolution	$5~\mu{ m m}$

Performance

Direct measurement of Higgs cross-section

$$M_{\rm recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2$$

- ✓ For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event.
 ✓ The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg is expected to smooth.
- ✓ The best resolution can be achieved from $Z(\rightarrow e^+e^-, \mu^+\mu^-)$.

Direct measurement of Higgs cross-section

- ✓ The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$
- ✓ Similar sub-percent level for ILC/FCC-ee

Measurements of $(\sigma Br)/(\sigma Br)$ and $\Delta Br/Br$

1. A likelihood L(Θ) is built :

$$f(n_{cb}, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{c \in \text{channels}} \prod_{b \in \text{bins}} \text{Pois}(n_{cb} \mid \nu_{cb}) \cdot G(L_0 \mid \lambda, \Delta_L) \cdot \prod_{p \in \mathbb{S} + \Gamma} f_p(a_p \mid \alpha_p)$$
Shape info.
for the discriminating Variables considered.
Likelihood as usual $L(\theta) = \prod_{i=1}^n f(y_i; \theta)$

2. A profile likelihood ratio $\lambda(\mu)$ (μ signal strength in our case: σ -Br) is constructed to estimate the parameters of interest:

$$\lambda(\mu) = \frac{L(\mu, \hat{\boldsymbol{\theta}})}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})} \qquad 0 \le \lambda \le 1$$

✓ If the likelihood ratio follows a χ^2 distribution, the significance can be approximately computed as sqrt[-2*log(λ)] with µ=1;

✓ Similarly, one can scan μ (Minuit) and the error of μ is the distance of x-axis between μ =1 and the point on the curve corresponding to $-\log(\lambda)=0.5$.

✓ For the measurement of Br, the uncertainty from total xsection obtained from previous page is incorporated into the fit.

A simultaneous fit to different channels is implemented to take, Higgs physics at CEPC (Y. Fang, IHEP) into account the correlations.

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.4%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.7%

• These two orthogonal methods can be combined to reach the best precision. Precision: 3.3%

Measurement of $\Delta(\sigma$ -Br)/(σ -Br) of ZH(jj)

- The analysis has migrated from fitting on the Z recoil mass of as a discriminating variable to on the flavor-tagging (2-D fit with B-likeliness & C-likeliness); The method of 3-D fit will be more effective.
- ✓ The combined precisions of for the measurement of H->bb,cc,gg for CEPC are 0.3%, 3.3%, 1.3% respectively.

Measurement of $\Delta(\sigma$ -Br)/(σ -Br) of ZH(WW*)

Results from other channels can be found in backup

- $\checkmark\,$ This channel is necessary for the Higgs width measurement.
- $\checkmark\,$ Hadronic, Leptonic and semi-leptonic decays of W bosons can be used in the analyses.
- ✓ Considering its complicate final states, MVA technique can be implemented to further suppress bkg.
- \checkmark The most dominant one is Z(->vv)H(->4j) and the combined expected precision is 1.0%.

Measurement of $\Delta(\sigma Br)/(\sigma Br)$ of $ZH(\tau \tau)$

- Develop LICH to identify tau.
- Signal and ZH events(Main WW) share the same shape
 - use $\log_{10}(D_0^2 + Z_0^2)$ fit to separate signal from bkgs.
 - Impact parameter, Distance from beam spot

ZH fin	al state	Precision
$Z \rightarrow \mu^+ \mu^-$	$H \to \tau^+ \tau^-$	2.3%
$Z \rightarrow e^+ e^-$	$H\to \tau^+\tau^-$	2.7%
$Z \rightarrow \nu \bar{\nu}$	$H \to \tau^+ \tau^-$	3.1%
$Z \to q \bar{q}$	$H \to \tau^+ \tau^-$	0.9%
Com	bined	0.79%

ഇ25000

20000

15000

10000

5000

Higgs rare decays and ww-fusion

✓ The expected precision is **15.9%** for H-> $\mu\mu$.

- \checkmark The process of Z(->vv)H(->Z γ ->qq γ) is studied and dMass=M_{qq γ}-M_{qq} is used.
 - The expected precision is 21%, 4σ with 5 ab⁻¹ for CEPC

✓ For WW fusion:

- the Z(->vv)H->bb is the irreducible bkg.
- 2D fit on polar angle and recoil mass is used.
- Expected precision is 3.0%

Measurement of the invisible decay of Higgs

- Invisible can be produced e.g. by the invisible decay of Higgs, NMSSM, 2HDM+singlet...
- The recoil mass method provides a chance to have the direct measurement.

ZH f	inal	Relative precision	Upper limit on
state st	udied	on $\sigma \times BR$	$BR(H \rightarrow inv)$
$Z \rightarrow e^+ e^-$	$H \to \mathrm{inv}$	325%	0.84%
$Z \rightarrow \mu^+ \mu^-$	$H \to \mathrm{inv}$	229%	0.62%
$Z \to q \bar{q}$	$H \to \mathrm{inv}$	220%	0.59%
Comb	ined	150%	0.42%

Summary of the precision for the measurement of Higgs

Property	Estimated Precision	
	CEPC-v1	CEPC-v4
m_H	5.9 MeV	
Γ_H	3.2%	3.3%
$\sigma(ZH)$	0.50%	0.50%
$\sigma(\nu \bar{\nu} H)$	3.05%	3.20%
Decay mode	$\sigma(ZH)$	$) \times BR$
$H \rightarrow b\bar{b}$	0.28%	0.29%
$H \rightarrow c\bar{c}$	3.27%	3.42%
$H \rightarrow gg$	1.28%	1.34%
$H \to \tau^+ \tau^-$	0.83%	0.87%
$H \rightarrow WW^*$	1.00%	1.04%
$H \rightarrow ZZ^*$	5.12%	5.21%
$H \to \gamma \gamma$	6.62%	7.25%
$H \rightarrow \mu^+ \mu^-$	16%	17%
$H \rightarrow Z \gamma$	20%	22%
$BR_{BSM}(H \rightarrow inv)$	< 0.31%	< 0.33%

- ✓ With combination of σ•Br of vvH(→bb) /Br(H->bb)/Br(H->ww) and the direct measurement, one can obtain the decay width of Higgs with the precision at ~3%.
- ✓ The measurement of Br is done by introducing the uncertainty of xsection of ZH from the direct measurement around sub-precent level.
- ✓ Most precisions are a few percent or lower (bb, invisible), allowing us to be sensitive to BSM deviation
- ✓ In comparison with HL-LHC, e⁺e⁻ machine is expected to have much better performance in the measurements of the coupling constants.
- ✓ From CEPC-v1 to CEPC-v4, the differences on the precision measurements are not significant.

Backup slides

Measurement of $\Delta(\sigma Br)/(\sigma Br)$ of ZH(ZZ*)

ZH final state	Precision
$Z \to \mu^+ \mu^- H \to Z Z^* \to \nu \bar{\nu} q \bar{q}$	7.3%
$Z \to \nu \bar{\nu} \qquad H \to Z Z^* \to \ell^+ \ell^- q \bar{q}$	8.0%
Combined	5.1%

Measurement of $\Delta(\sigma$ -Br)/(σ -Br) of ZH($\gamma\gamma$)

 \checkmark Z(->ee)H(-> $\gamma\gamma$) is not considered due to large bkg from Bhabha process.

✓ A mixed fast ((Z->II)H(-> $\gamma\gamma$)-full (Z(->qq)H-> $\gamma\gamma$) simulated signal samples used in the analyses. ✓ The combined expected precision is 6.6%.

Higgs analyses toward CEPC CDR

Motivation

- The discovery of Higgs in 2012 is a milestone of particle physics.
- The further measurements of the properties of the ٠ particle confirm it is SM Higgs.
- The precision of Higgs measurement is important since the new physics (NP) could introduce a deviation $(\Delta^{\sim}cv^{2}/M_{NP}^{2})$ which is proportional to $1/M_{NP}^{2}$.
- With LHC, some systematics shows the bottleneck, e.g. ٠ theoretical sys., for the precise measurements of the **Higgs coupling etc...**
- A lepton collider Higgs factory can provide a direct measurement of the Higgs xsection. Higgs physics at CEPC (Y. Fang, IHEP)

Higgs analyses at Pre-CDR

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{c_i}{M^2} \mathcal{O}_{6,i}$$

% precision → M ~ 1 TeV to new physics → ~ × 10 over LHC

$\Delta(Br * \sigma)$ fit Result

- Most consistent, for difference:
 - Pre_CDR use different simulation sample, and some assumption/extrapolation.
 - Manqi's from data input, Front & fit from mass distribution. End.
 - Data entry
 - Some data not prepared. ($v\bar{v}H$, e^+e^-H , WW fusion, and some WW, ZZ channel.....)
 - Some data outdated. ($\gamma\gamma$)
 - Fit strategy
 - For bb/cc/gg/ $\tau\tau$, not only mass distribution used.
 - Next step, will repeat their fit in the likelihood model to raise precision.

κ framework

- Define as the ratio of the coupling to SM expects. $\kappa_f = \frac{g(hff)}{g(hff;SM)}, \ \kappa_V = \frac{g(hVV)}{g(hVV;SM)}$
- In CEPC, *κ* occurs on three places:
 - For Production, as now only ZH sample, κ_Z^2 ;
 - For Partial decay, no top quark κ_t like: κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 , κ_{Inv}^2
 - For Total width Γ_{H} . $\Gamma_{H} = \Gamma_{SM} + \Gamma_{BSM}$ for exotic decays.
- *κ* framework varies for different assumptions.
- Here our fit, as sample limited, we set:
 - $\Gamma_{BSM} = 0$

 $\kappa_{H}^{2} = 0.57\kappa_{b}^{2} + 0.22\kappa_{W}^{2} + 0.09\kappa_{g}^{2} + 0.06\kappa_{\tau}^{2} + 0.03\kappa_{Z}^{2} + 0.03\kappa_{c}^{2} + 0.0023\kappa_{\gamma}^{2} + 0.0016\kappa_{Z\gamma}^{2} + 0.0001\kappa_{s}^{2} + 0.00022\kappa_{\mu}^{2}$

- Assume Γ_H constant currently. and here no $Z\gamma$ or s quark sample;
- So set 9 κ : κ_Z^2 , κ_W^2 , κ_b^2 , κ_c^2 , κ_g^2 , κ_τ^2 , κ_γ^2 , κ_μ^2 , κ_{Inv}^2

Feasibility & Optimized Parameters

Feasibility analysis: TPC and Passive Cooling Calorimeter is valid for CEPC

	CEPC_v1 (~ ILD)	Optimized (Preliminary)	Comments
Track Radius	1.8 m	>= 1.8 m	Requested by Br(H->di muon) measurement
B Field	3.5 T	3 T	Requested by MDI
ToF	-	50 ps	Requested by pi-Kaon separation at Z pole
ECAL Thickness	84 mm	84(90) mm	84 mm is optimized on Br(H->di photon) at 250 GeV; 90mm for bhabha event at 350 GeV
ECAL Cell Size	5 mm	10 – 20 mm	Passive cooling request ~ 20 mm. 10 mm should be highly appreciated for EW measurements – need further evaluation
ECAL NLayer	30	20 – 30	Depends on the Silicon Sensor thickness
HCAL Thickness	1.3 m	1 m	-
HCAL NLayer	48	40	Optimized on Higgs event at 250 GeV; Margin might be reserved for 350 GeV.