Study of the Higgs couplings to leptons and Higgs CP measurement at the ILC

- Shin-ichi Kawada (DESY)
- on behalf of ILD concept group
- Windows on the Universe @ Quy Nhon, Vietnam
 - 2018/August/5 11

Introduction

Discovery of Higgs boson at the LHC But, still many open questions:

- SM Higgs? BSM Higgs?
- dark matter, dark energy
- BSM (SUSY, composite...)

Precise measurement of Higgs boson

would be a key to answer the questions

- mass-coupling relation
- any deviation shows the existence of BSM
- typically small deviation

on Higgs boson at the

 κ_{z} κ_{z} κ_{w} κ_{t} κ_{t

ATLAS and CMS

ATLAS+CMS

The International Linear Collider (ILC)

- e^+e^- collider, $E_{CM} = 250 \text{ GeV}$ (upgradable to 500 GeV, 1 TeV)
- polarized beam (e^{-} : ±80%, e^{+} : ±30%)
- clean environment, known initial state

ILC250 Physics Program

2 ab⁻¹: half-million Higgs (*ZH*) in ~11 years

Electroweak symmetry breaking

- comprehensive and precise study of Higgs sector [T. Barklow et al., PRD **97** 053003 (2018)]
- electroweak process [talked by R. Yonamine (Tue.)]
 LEP2 + beam polarization/higher energy/

better detectors/ x1000 more data

---> indirect search for BSM

Direct searches for BSM

ILD (International Large Detector)

high precision detector for particle flow reconstruction

Tracker: Vertex, TPC Calorimeter: ECAL, HCAL 3.5T magnetic field Yoke for muon, Forward system

Requirements:

Impact parameter resolution

 $\sigma_{r\phi} < 5 \oplus \frac{10}{p\sin^{3/2}\theta} \,\mu\mathrm{m}$

- > Momentum resolution $\sigma_{1/p_T} < 2^*10^{-5} \text{ GeV}^{-1}$
- > Energy resolution $\sigma_E/E = 3 4\%$

arXiv:1310.0763 T. Barklow et al., PRD **97** 053003 (2018)

Higgs Couplings To Leptons

testing Yukawa couplings leptons: small uncertainty of its mass ---> suitable tool for precise measurement

different BSM scenario

---> different pattern of deviation from SM

Higgs To Taus

full simulation with ILD, all backgrounds considered, realistic reconstruction

$$e^+e^- \rightarrow HZ \rightarrow \tau^+\tau^-(q\bar{q}/e^+e^-/\mu^+\mu^-)$$

isolated tau jets

collinear approximation

1 or 3 charged particles jet charge = ± 1 invariant mass < 2 GeV

to estimate v momenta from tau decay

various precuts applied TMVA(BDT) for final discrimination

expected precision at the ILC $\sigma \times BR(H \rightarrow \tau^+ \tau^-)$: 1.2% (ILC250 / 2 ab⁻¹) 1.0% (+ ILC500 / 4 ab⁻¹)

SK's PhD thesis (2016), http://ir.lib.hiroshima-u.ac.jp/en/00040208

Higgs To Muons

Challenging: tiny branching ratio $BR(H \rightarrow \mu^+\mu^-) \sim 2.2 \times 10^{-4}$ Key detector performance: momentum resolution $e^+e^- \rightarrow HZ \rightarrow \mu^+\mu^-(q\bar{q}/\nu\bar{\nu})$

full simulation with ILD, all backgrounds considered, realistic reconstruction

muon selection

pair of prompt, isolated, opposite charged, and well-measured is selected as $H \rightarrow \mu^+\mu^-$ candidate

various precuts applied TMVA(BDT) for final discrimination pseudo-experiment (next page)

insufficient MC statistics

Higgs To Muons

fit full simulation results with Gaussian(signal) and constant(background)

fit results ---> pseudo-experiment repeat many times $e^+e^- \rightarrow \mu^+\mu^- q \bar{q}$, $E_{CM} = 250 \text{ GeV}$, 0.9 ab⁻¹, $e_L^- e_R^+$, one pseudo-experiment

expected precision at the ILC $\sigma \times BR(H \rightarrow \mu^{+}\mu^{-})$: preliminary 21% (ILC250 / 2 ab⁻¹) 15% (+ ILC500 / 4 ab⁻¹)

D. Jeans, G. W. Wilson, PRD 98 013007 (2018)

Full τ Reconstruction

In $e^+e^- \rightarrow ZH$, $H \rightarrow \tau^+\tau^-$ events:

visible Z decay products • excellent vertex detector ---> τ production vertex ---> trajectory of τ decay products ---> p_{T} of τ -pair system

6 constraints for ν

6 unknowns: two ν 3-momenta in hadronic τ decay events

"polarimeter": estimator of spin direction

from τ decay products

Information on τ momentum and spin relies on excellent detector performance impact parameter, tracking, photon and jet measurement

---> plane of τ momentum

CP in $H \rightarrow \tau^+ \tau^-$: Sensitivity

signal: phase of $\Delta \phi$ distribution sensitive to CP background: consistent with flat distribution

pseudo-experiment: simultaneous likelihood fit to $\Delta \phi$ distributions in all channels

Summary

- Precise measurement of Higgs boson would be a key to uncover new physics
- Presented Higgs to leptonic channel and Higgs CP measurement at the ILC
- At ILC250;
 - $\sigma \times BR(H \rightarrow \tau^+ \tau^-)$ with a precision of 1.2% (1.0% with ILC500)
 - $\sigma \times BR(H \rightarrow \mu^+ \mu^-)$ with a precision of 21% (15% with ILC500)
 - CP mixing angle ψ_{CP} in $H \rightarrow \tau^+ \tau^-$ with a precision of 75 mrad

BACKUP

Key Point

K. Fujii's talk, LCWS2014

LHC: all measurements are $\sigma \times BR$ ILC: $\sigma \times BR$ measurements + σ measurement

arXiv:1710.07621

arXiv:1506.05992 [hep-ex]

Single Higgs Production

 $\sqrt{s} = 250 \text{ GeV}$

Higgs-strahlung (Zh) dominant

 $\sqrt{s} = 500 \text{ GeV}$

WW-fusion dominant

Е _{см}	process	beam pol.	∫ <i>Ldt</i> (fb ⁻¹)	# events
500	$v \overline{v} h$	L	1600	58
		R	1600	8
	$q \overline{q} h$	L	1600	25
		R	1600	16
250	$ u \overline{ u} h$	L	900	28
		R	900	8
	$q\overline{q}h$	L	900	41
		R	900	15

L: $(e^{-}, e^{+}) = (-0.8, +0.3)$ R: $(e^{-}, e^{+}) = (+0.8, -0.3)$