Measurement of Higgs boson production in association with top quarks with ATLAS

Rencontres du Vietnam 2018, Quy Nhon

Johnny Raine (Université de Genève) On behalf of the ATLAS collaboration 8th August, 2018

Introduction

- All current measurements of the Higgs boson have been consistent with SM
- Fermions couple with the Higgs boson through Yukawa interactions
 - Coupling strength proportional to fermion mass
 - Largest coupling is to the top quark
 - Sensitive to the scale of new physics!
 - y_t mainly constrained from loop processes

Not model independent, ignores potential BSM contributions JniGe) Vietnam 2018 8th August, 2018 2 / 16

- $t\bar{t}H$: More model independent test of y_t
 - Fourth main Higgs production at LHC
 - Direct measurement of the coupling of Higgs to top quarks
- However, very challenging to measure
 - $\triangleright~$ Small cross section, ${\sim}0.5~\text{pb}$ at 13 TeV
 - Complex final states
 - Large irreducible backgrounds
 - $t\bar{t} + b\bar{b}$, $\mathcal{O}(2)$ magnitudes larger
 - $t\bar{t} + V$, $\sim 1.5 \text{ pb}$
- Huge efforts to observe tt
 t H production during LHC Run 1 and 2

Analysis Strategy

▶ Wide range of analyses designed to target the various Higgs boson decays

- \triangleright Additional considerations to the decay of $t\bar{t}$ pair
- \triangleright Final states with many objects: jets, *b*-jets, *e*, μ , hadronic τ , photons
- Huge thanks to the excellent detector performance magnificent effort of ATLAS performance groups

Analysis Strategy

- Four analyses targetting different Higgs decay modes
- Wide range of signal purity and expected yields
- Analysed separately before entering combined analysis

$t\bar{t}H(H ightarrow b\bar{b})$

ttH multilepton

Johnny Raine (UniGe)

Analysis Strategy $t\bar{t}H(H \rightarrow b\bar{b})$

- Benefit from large $H
 ightarrow bar{b}$ BR, selects leptonic top decays
- ► Large irreducible background from $t\bar{t} + jets$, especially $t\bar{t} + Heavy$ Flavour
 - ▷ Large theory uncertainties, biggest source of systematic uncertainty
- Use of MVA techniques in signal regions to enhance signal sensitivity

Categorisation

Use *b*-tagging of jets and object multiplicities
 Dedicated boosted region targets high *p_T* top/Higgs

Reconstruction

 Solve object combinatorics to reconstruct final state
 Reco BDT, MEM and Likelihood discriminants

Classification

- BDTs for $t\bar{t}H$ vs $t\bar{t} + jets$
- Optimised in all SRs
- Reconstruction + event kinematic variables

Analysis Strategy $t\bar{t}H(H \rightarrow b\bar{b})$ Results

- Binned profile likelihood over all regions
- ▶ tt+≥1b, tt+≥1c normalisation factors kept free floating
- Significance of 1.4σ (1.6 σ expected)
- Systematically limited by modelling of *tt* + HF background

Uncertainty source	$\Delta \mu$	
$t\bar{t}+\geq 1b$ modelling	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
ttH modelling	+0.22	-0.05
$(t\bar{t}+\geq 1c \text{ modelling})$	+0.09	-0.11
JVT, pileup modelling	+0.03	-0.05
Other background modelling	+0.08	-0.08
$t\overline{t} + \text{light modelling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t}+\geq 1b$ normalisation	+0.09	-0.10
$t\bar{t}+\geq 1c$ normalisation	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

Analysis Strategy *ttH* multileptons

- Target Higgs decays with leptonic final states and leptonic tt decays
- Same sign and >3 lepton events reduce tt
 background
 - Requirements on (b-)jet multiplicities
 - Events categorised by number of leptons & hadronic taus
 - Wide range of yields and S/B purity

- Object level BDTs used to reduce non-prompt leptons and charge mis-ID
- Enhance separation from tt
 t t V with BDTs
 - \triangleright Event count in $3\ell 1 au_{had}$ and 4I

Analysis Strategy *t*t*H* multileptons Results

Channel	Significance		
Channel	Obs.	Exp.	
$2\ell \mathrm{OS} + 1 au_{had}$	0.9σ	0.5σ	
$1\ell+2 au_{\it had}$	-	0.6σ	
4ℓ	-	0.8σ	
$3\ell+1 au_{had}$	1.3σ	0.9σ	
$2\ell SS + 1 au_{had}$	3.4σ	1.1σ	
3ℓ	2.4σ	1.5σ	
$2\ell SS$	2.6σ	1.9σ	
Combined	4.1σ	2.8σ	

- Binned profile likelihood across all regions
- Observed significance of 4.1σ for $t\bar{t}H$ production (2.8 σ exp)
- Additional cut based cross check analysis performed
 - Consistent results with the MVA based approach
 - ▷ 15% poorer sensitivity
- ► Leading systematics from $t\bar{t}H$ and $t\bar{t}V$ modelling, non-prompt lepton estimates and jet energy scale/resolution

- Small rate but very signal enriched regions with a continuous background
- Reconstruct Higgs as a narrow peak, use side bands to estimate background
 - \triangleright Main background from non-resonant $\gamma\gamma$ and non- $t\bar{t}H$ production
- Categorise events by leptonic (>1*l*) and hadronic (0*l*) *tt* decays
- Train BDTs to separate ttH from background in lep and had
 - Jet/lepton 4-vector info
 - Photon observables
 - E_T^{miss} and b-tagging
- Cut on BDT distributions to define signal rich regions
 - Seven regions in total

Analysis Strategy $t\bar{t}H(\gamma\gamma)$ Results

- > Unbinned maximum likelihood fit over $m_{\gamma\gamma}$ in range 105 160 GeV
 - ▷ Non- $t\bar{t}H$ production fixed to SM prediction
 - $\triangleright\,$ Function for $\gamma\gamma$ background derived in each regions
 - Leptonic regions: simulation
 - Hadronic regions: data driven from control region

• Observed significance of 4.1σ for $t\bar{t}H$ production (3.7 σ expected)

- ▷ Measured signal strength $\mu = 1.39^{+0.48}_{-0.42} = 1.39^{+0.42}_{-0.36} (stat.)^{+0.23}_{-0.17} (syst.)$
- Currently statistically limited (~29% stat uncertainty)

Analysis Strategy $t\bar{t}H(4\ell)$

- 19.8 B 111 Extremely low rate but very high signal to background ratio (up to 500%!)
- Look at 4l inv-mass window 115-130 GeV
- Categorise events by $t\bar{t}$ decay: leptonic (1 additional ℓ) and hadronic (0 additional ℓ)
 - \triangleright Further split hadronic into two bins with BDT to enhance $t\bar{t}H$ purity
- No observed events s 1.4 Events 1.2 Data ATLAS Fewer than one expected event tH aaE+bbH 13 TeV 79.8 fb⁻¹ Expected significance of 1.2σ 15 < m., < 130 GeV V VVV Very statistically limited 0.8 Expected Region Observed 0.6 tŦH Non-tTH Higgs Other bkg Had 2 0.169(31)0.021(7)0.008(8)0 0.4 Had 1 0.216(32)0.20(9)0.22(12)0 0.212(31)0.0256(23)0.015(13)Lep 0 02 0 Had 2 Had 1 Lep

Combined Result

Combination of all four analyses performed using profile likelihood method

Observation of tt
 t H production at 13 TeV. 5.8σ observed (4.9σ expected)
 Measured tt
 t H cross section at √s = 13 TeV:

 $\sigma_{t\bar{t}H} = 670 \pm 90(\text{stat})^{+110}_{-100}(\text{syst}) \text{ fb}^{-1}$

Cross section 1.32imes SM prediction, compatible with SM at around 1 σ level

Combined Result

Some channels still very much limited by statistics

Modelling uncertainties dominate the systematic uncertainties

Uncertainty source	$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H} [\%]$
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$t\bar{t}H$	6.0
Non-ttH Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
Jets, E_{T}^{miss}	4.9
Electrons, photons	3.2
Luminosity	3.0
τ -lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

Combination with Run 1

Johnny	Raine	(UniGe)
5011111		(01100)

Combined (13 TeV)

Combined (7, 8, 13 TeV)

 $H \to ZZ^* \to 4\ell$

<900 (68% CL)

 $670 \pm 90 \text{ (stat.)} ^{+110}_{-100} \text{ (syst.)}$

79.8

36.1 - 79.8

4.5, 20.3, 36.1-79.8

 1.2σ

 4.9σ

 5.1σ

 0σ

 5.8σ

 6.3σ

- Search for $t\bar{t}H$ production performed at 13 TeV using 36.1 79.8 fb⁻¹ data
- Combination of several challenging analyses
 - Extensive use of multivariate techniques to enhance sensitivity
 - Large systematic uncertainties on modelling
 - Some channels statistically limited, will only become more sensitive!
- ► ATLAS observation of $t\bar{t}H$ with a significance of 6.3σ (5.1σ exp)
 - Direct observation of top Yukawa coupling
 - ▷ Measured $\sigma_{t\bar{t}H} = 670 \pm 90(\text{stat})^{+110}_{-100}(\text{syst}) \text{ fb}^{-1}$ at 13 TeV
 - \triangleright Consistent with SM prediction $\sigma_{t\bar{t}H} = 507^{+35}_{-50}$ fb⁻¹

Combination

Modelling of $t\bar{t}$ is crucial to the analysis, $t\bar{t} + HF$ has large theory uncertainty

- Split into $t\bar{t} + \text{light}, t\bar{t} + \ge 1c, t\bar{t} + \ge 1b$
 - ▷ Further split tt+≥1b by number of additional b-hadrons in jets

Nominal $t\bar{t}$ sample uses 5FS prediction

- ▷ Use dedicated Sherpa 4FS $t\bar{t} + b\bar{b}$ prediction to improve modelling
 - Both additional *b*-quarks to NLO precision in QCD
 - Takes b-quark mass into account
- ▷ Reweight relative $t\bar{t}+\geq 1b$ subcomponents to 4FS values

$t\overline{t}H\left(H ightarrow b\overline{b} ight)$ - $t\overline{t}$ Systematic Model

$t\bar{t}$ modelling is dominant contribution to total systematic uncertainty

Systematic source	Description	$t\bar{t}$ categories
$t\bar{t}$ cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \geq 1c$ normalization	$t\bar{t} + \ge 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \geq 1b$ normalization	$t\bar{t} + \ge 1b$
Sherpa5F vs. nominal	Related to the choice of NLO event generator	All, uncorrelated
PS & hadronization	Powheg+Herwig 7 vs. Powheg+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+HERWIG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \ge 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg+Pythia 8 (5F)	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary μ_Q from $H_T/2$ to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ PDF (MSTW)	MSTW vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ PDF (NNPDF)	NNPDF vs. CT10	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ UE	Alternative set of tuned parameters for the underlying event	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 1b$ MPI	Up or down by 50%	$t\bar{t} + \ge 1b$
$t\bar{t} + \geq 3b$ normalization	Up or down by 50%	$t\bar{t} + \ge 1b$

$t\bar{t}H\left(H ightarrow bar{b} ight)$ - Impact of Systematic Uncertainties

- Analysis is currently systematically limited
- Largest uncertainties from $t\bar{t} + HF$ modelling
- Also notable impact:
 - Limited MC stats.
 - Flavour tagging
 - Jet energy scale and resolution
- Large number of constrained two-point systematics

$t\bar{t}H\left(H ightarrow bar{b} ight)$ - Reconstruction Methods

Johnny Raine (UniGe)

Vietnam 2018

Looking at three signal regions post fit

- \triangleright *t*t*H* shown for extracted signal strength $\mu = 0.84^{+0.64}_{-0.61}$
- Showing two most signal enriched regions and boosted signal region

See good post-fit agreement between data and simulation in all regions

$t\overline{t}H$ ML - Regions

		ATLAS E = 13 TeV			mis-id tłw tz Diboson
Channel	Selection criteria				other
Common	$N_{\text{jets}} \ge 2$ and $N_{b\text{-jets}} \ge 1$	2/SS	3/ SR	4/ Z-enr.	4/ Z-dep.
$2\ell SS$	Two very tight light leptons with $p_T > 20$ GeV		\wedge		\wedge
	Same-charge light leptons				
	Zero medium τ_{had} candidates				
	$N_{\text{iets}} \ge 4$ and $N_{b-\text{iets}} < 3$				\smile
3ℓ	Three light leptons with $p_T > 10$ GeV; sum of light-lepton charges ± 1				
	Two same-charge leptons must be very tight and have $p_T > 15 \text{ GeV}$	2/SS+1Text	2/OS+1Text	3C+17bad	17+2Trat
	The opposite-charge lepton must be loose, isolated and pass the non-prompt BDT				
	Zero medium τ_{had} candidates			()	
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOC pairs				
	$ m(3\ell) - 91.2 \text{ GeV} > 10 \text{ GeV}$				
4ℓ	Four light leptons; sum of light-lepton charges 0				
	Third and fourth leading leptons must be tight	24 (BH CD	240700	24 10/00	244.00
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for all SFOC pairs	ar nw ch	SF 1/2 CH	Se VV CR	
	$ m(4\ell) - 125 \text{ GeV} > 5 \text{ GeV}$				
	Split 2 categories: Z-depleted (0 SFOC pairs) and Z-enriched (2 or 4 SFOC pairs)				
$1\ell + 2\tau_{had}$	One tight light lepton with $p_T > 27 \text{ GeV}$			\mathbf{V}	
	Two medium τ_{had} candidates of opposite charge, at least one being tight	-	-	-	-
	$N_{\text{iets}} \ge 3$				
$2\ell SS + 1\tau_{had}$	Two very tight light leptons with $p_T > 15$ GeV	😴 100 E			
	Same-charge light leptons	° 90		ATLAS Si	imulation _=
	One medium τ_{had} candidate, with charge opposite to that of the light leptons	<u>i</u>		∦s = 13 ⊺e	IV E
	$N_{\text{iets}} \ge 4$	୍ଦି ⁸⁰		$H \rightarrow oth$	her
	m(ee) - 91.2 GeV > 10 GeV for ee events	正 70			-
$2\ell OS+1\tau_{had}$	Two loose and isolated light leptons with $p_T > 25$, 15 GeV	<u>a</u> 60		$\Pi \rightarrow u$	
	One medium τ_{had} candidate	iii iii		$H \rightarrow ZZ$	<u> </u>
	Opposite-charge light leptons	50		$H \rightarrow W$	w
	One medium τ_{had} candidate	40			
	$m(\ell^+\ell^-) > 12$ GeV and $ m(\ell^+\ell^-) - 91.2$ GeV $ > 10$ GeV for the SFOC pair	20			
	$N_{\text{jets}} \ge 3$	30			1
$3\ell+1\tau_{had}$	3ℓ selection, except:	20			
	One medium τ_{had} candidate, with charge opposite to the total charge of the light leptons	10			
	The two same-charge light leptons must be tight and have $p_T > 10 \text{ GeV}$				
	The opposite-charge light lepton must be loose and isolated	0 - 2/20	3/00 4/2 4/	2 2/50 2/0	0 3/+1 1/+2
		03-	- or - enrici	depleto th	+the had thad

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	$2T^*$	$1L^*, 2T^*$	2L, 2T	1T	$2T^*$	$2L^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	0M	-	1T, 1M	1M	1M	1M
$N_{\rm jets}, N_{b-\rm jets}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$

tTH ML - Systematics

- BDT trained to select three jets form hadronic top
- Does not enter the analysis
- Top mass reconstructed in bins with highest S/B
- Excess in events around top mass consistent with ttH

Run: 310341 Event: 3252230282 2016-10-11 03:50:46 CEST