<u>Observation of</u> <u>Top quark pair production in</u> <u>association with a Higgs boson</u> <u>using the Compact Muon Solenoid</u>

Freya Blekman for the CMS collaboration

Interuniversity Institute for High Energies Vrije Universiteit Brussel (Belgium)

top quarks + Higgs: production

BRUSSEL

The Top-Higgs coupling

Decay modes: $ttbarH (H \rightarrow bb)$

- Largest Higgs boson branching ratio
- Access to coupling both 3rd generation quarks
- Huge combinatorics
- Poor Higgs mass resolution
- Background comes with large theory uncertainties

Channels:

UNIVERSITEIT BRUSSEL

Leptonic tt: higher purity Fully hadronic tt: higher rate

arXiv:1804.03682, submitted to JHEP

<u>ttH (H \rightarrow bb): leptonic distributions</u>

BRUSSEL

arXiv:1804.03682, submitted to JHEP

Single- and multilepton: Results

Best-fit $\mu = 0.72^{+0.45}_{-0.45}$, at 1.6 (2.2) σ obs. (exp.) significance

All hadronic final state

- At least 7 jets
- At least 3 b-tagged jets
- No leptons, HT>500 GeV
- QCD multijet production shapes and rate determined from data control regions
- Use Matrix Element Method
 - discriminate between QCD multijet, ttbar+HF and ttH

All hadronic final state

- At least 7 jets
- At least 3 b-tagged jets
- No leptons, HT>500 GeV
- QCD multijet production shapes and rate determined from data control regions
- Use Matrix Element Method
 - discriminate between QCD multijet, ttbar+HF and ttH

arXiv:1803.06986, submitted to JHEP

All hadronic final state

<u>Multileptons</u>

• Many possible final states when decay Higgs to WW, ZZ, ττ

- Categorise on number of e,µ (=`leptons') and number of hadronic taus
 - 1 lepton + $2\tau_h$, 2 same-sign leptons + $0/1\tau_h$, 3 leptons + $0/1\tau_h$, 4 leptons
 - Also require jets and b-tagged jets consistent with final states
 - Backgrounds: tt+Z/W, dibosons (from simulation and control regions)
- Discriminate signal from background using MEM and BDT

ttH multilepton: analysis

- Categorising events in lepton flavour and b-jet multiplicity
- Using combination of simple yield, BDT and MEM depending on final state

ttH multilepton: analysis

- Categorising events in lepton flavour and b-jet multiplicity
- Using combination of simple yield, BDT and MEM depending on final state

Combination: first observation of ttH

• Includes:

BRUSSFI

- All ttH analyses using 2016 data including what I showed earlier
- All ttH analyses using 2011 and 2012 datasets (up to 5.1 fb⁻¹, 19.7 fb⁻¹)
- 2016 H → γγ analysis has ttH categories, which are also included

- Correlations Run 1 vs Run 2:
 - Theory uncertainties (signal, some background) are correlated when appropriate
 - Experimental uncertainties mostly uncorrelated

Combination: first observation of ttH

- Observed significance is 5.2σ (4.2σ expected) with \bullet respect to no-ttH hypothesis
- First observation of ttH production! ٠

tH production: new preliminary results

- Single top plus Higgs is sensitive to amplitude, relative sign and phase Y_t (and $g_{\rm HVV}$)
- Destructive interference in SM but BSM could enhance this!

Experimental signature: back-toback top-Higgs with light forward jet again <u>using machine learning to</u> <u>discriminate signal from</u> <u>background</u>

- CMS has preliminary results based on 2016 dataset (36 fb⁻¹) combining 3 decay channels: <u>HIG-18-009</u> using an extension of subset ttH analyses:
 - Multileptons (H \rightarrow WW/ZZ/ $\tau\tau$)
 - Leptonic top + b jets (H \rightarrow bb)
 - Leptonic top + diphotons (H $\rightarrow \gamma\gamma$)

Correlation ttH vs tH: fitting coupling

- Observed μ_{tH} < 26.5 (σ × BR < 2.03 pb)
- Expected μ_{tH} < 13.6 (σ × BR < 1.04 pb)

Note: Limits on signal strength tH are assuming SM couplings ttH

Correlation ttH vs tH: fitting coupling

- Observed $\mu_{tH} < 26.5 \ (\sigma \times BR < 2.03 \ pb)$
- Expected μ_{tH} < 13.6 (σ × BR < 1.04 pb)

Note: Limits on signal strength tH are assuming SM couplings ttH

Sumary and outlook

- Higgs physics has now moved from search and discovery phase into precision measurement era
- CMS has performed a combination of all²⁵ 3 35 published ttH results and observed ttH production
- Measurement of the top-Higgs coupling is among the primary goals of the LHC physics program
- Edging closer to tH production with (non significant still) preference to positive coupling
- Future plans: differential cross sections, many EFTs / top partners / exotic 4th gen / 2HDM / etc look like SM top-Higgs...until you look in the tails

The Top-Higgs coupling

- Vital step in probing SM
 nature of the Scalar
 boson
- Top quark has strongest SM coupling (y_t ~1)
- Direct and indirect measurement of y_t possible
 - Direct: ttH production
 - Direct: tH production (inc. access to sigm)
 ^gmdirect: top top s_v
 - ⁸Imdiréct: top top ps_v dominate gluon fusion and γγ decay channel

 $g_{HVV} = \kappa_V \left(2 \frac{m_V^2}{v} \right) \quad g_{Hff} = \kappa_f \left(\frac{m_V^2}{v} \right)$

MIR

arXiv:1804.03682, submitted to JHEP

Signal extraction ttH with H \rightarrow bb

- Overwhelming background means advanced analysis like MEM & machine learning techniques are optimal
- After optimization (full comparison :

UNIVERSITEI BRUSSEL

- in single lepton Deep Neural Network is best, in multi-lepton channel matrix
- VRIJE element method combined with boosted decision tree

<u>h-t yields</u>

Multilepton

lepton + *bb*

Process	$\ell\ell\ell$	μμ	еµ				
tŦW±	22.50 ± 0.35	68.03 ± 0.61	97.00 ± 0.71				
$t\bar{t}Z/t\bar{t}\gamma$	32.80 ± 1.79	25.89 ± 1.12	64.82 ± 2.42				
WZ	8.22 ± 0.86	15.07 ± 1.19	26.25 ± 1.57	Process	3 tags	4 tags	Dilepton
ZZ	1.62 ± 0.33	1.16 ± 0.29	2.86 ± 0.45	$t\bar{t} + LF$	24127 ± 5812	320 ± 181	5248 ± 998
$W^{\pm}W^{\pm}qq$	_	3.96 ± 0.52	6.99 ± 0.69	$t\bar{t}+c\bar{c}$	8521 ± 4869	339 ± 256	2084 ± 1204
$W^{\pm}W^{\pm}(DPS)$	-	2.48 ± 0.42	4.17 ± 0.54	$t\bar{t} + b\overline{b}$	4115 ± 2265	777 ± 429	745 ± 436
VVV	0.42 ± 0.16	2.99 ± 0.34	4.85 ± 0.43	$t\bar{t} + b$	3946 ± 2116	183 ± 113	766 ± 427
tttt	1.84 ± 0.44	2.32 ± 0.45	4.06 ± 0.57	$t\bar{t}+2b$	2299 ± 1148	138 ± 88	401 ± 228
tZq	3.92 ± 1.48	5.77 ± 2.24	10.73 ± 3.03	Single top	1979 ± 353	78.4 ± 25.8	285 ± 37
tZŴ	1.70 ± 0.12	2.13 ± 0.13	3.91 ± 0.18	tīZ	202 ± 30	32.0 ± 6.6	54.8 ± 7.3
γ conversions	7.43 ± 1.94	-	23.81 ± 6.04	Z +jets	-	_	69.0 ± 31.5
Non-prompt	25.61 ± 1.26	80.94 ± 2.02	135.34 ± 2.83	$t\bar{t}W^{\pm}$	90.3 ± 22.8	4.2 ± 2.8	31.4 ± 5.9
Charge flips	-	-	58.20 ± 0.30	tZq	28.3 ± 5.7	2.9 ± 2.3	-
Total Background	106.05 ± 3.45	210.74 ± 3.61	443.30 ± 8.01	Total Background	45308 ± 8279	1875 ± 551	9684 ± 1695
ttH	18.29 ± 0.41	24.18 ± 0.48	35.21 ± 0.58	ttH	268 ± 31	62.0 ± 9.9	48.9 ± 5.9
tHq (SM)	0.52 ± 0.02	1.43 ± 0.04	1.92 ± 0.04	tHq (SM)	11.1 ± 3.3	1.3 ± 0.3	0.31 ± 0.08
tHW (SM)	0.62 ± 0.03	0.71 ± 0.03	1.11 ± 0.04	tHŴ (SM)	7.6 ± 1.1	1.1 ± 0.3	1.4 ± 0.2
Total SM	125.48 ± 3.47	237.06 ± 3.64	481.54 ± 8.03	Total SM	45723 ± 8279	1941 ± 551	9735 ± 1695
tHq ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	7.48 ± 0.14	18.48 ± 0.22	27.41 ± 0.27	tHq ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	160 ± 38	19.1 ± 5.2	3.9 ± 1.0
tHW ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	7.38 ± 0.16	7.72 ± 0.17	11.23 ± 0.20	tHW ($\kappa_{\rm V} = 1 = -\kappa_{\rm t}$)	91.9 ± 11.9	13.7 ± 2.3	17.6 ± 2.2
Data	127	280	525	Data	44311	2035	9065

tH bb postfit classifiers

