

2"

Luminous and dark matter in massive galaxies with strong and weak lensing

Alessandro Sonnenfeld (IPMU), Anupreeta More (IUCAA), James Chan (MPA), Masamune Oguri (UTokyo), Kenneth Wong (NAOJ), Sherry Suyu (MPA)

Early-type galaxies

The stellar initial mass function (IMF)

These stars contribute very little to the light of a galaxy, but contribute a lot to the mass: uncertainty in M/L of up to a factor of 2!

- Stellar IMF is the biggest systematic in stellar mass measurements
- Challenge for the measurement of dark matter distribution

Questions

- What is the stellar IMF of early-type galaxies? (Star formation physics)
- What is the dark matter density profile in the inner regions of galaxies? (Dark matter physics, mergers, adiabatic contraction, AGN feedback)

Strong gravitational lensing

- Typical scale: ~10kpc
- Few % precision in measurement of enclosed projected mass

Approach #1: "love a lens"

- "Jackpot lens" (Gavazzi et al. 2008): 2 sources behind lens
- 4h Keck spectrum: velocity dispersion profile
- Stellar dynamics provides independent constraint on density profile

Sonnenfeld et al. (2012)

Approach #2: statistical combination of many lenses

SLACS sample (Auger et al. 2010)

Approach #2: statistical combination of many lenses

$$\alpha_{\rm IMF} \equiv \frac{M_*^{\rm (true)}}{M_*^{\rm (SPS)}}$$

"IMF mismatch parameter"

- 53 strong lenses (SLACS sample)
- 2 constraints per lens: Einstein radius + central velocity dispersion
- Degeneracy between DM density profile and IMF

Stellar mass dependence of IMF

Auger et al. (2010)

Strong lensing with the HSC survey

- 1,400 square degrees
- Depth ~26 mag (i-band)
- Typical seeing 0.7"

Publ. Astron. Soc. Japan (2018) 70 (SP1), S29 (1–19) doi: 10.1093/pasi/psx062 Advance Access Publication Date: 2017 September 1

Survey of Gravitationally-lensed Objects in HSC Imaging (SuGOHI). I. Automatic search for galaxy-scale strong lenses

Alessandro SonnenFELD,^{1,*} James H. H. CHAN,^{2,3,4} Yiping SHU,⁵ Anupreeta More,¹ Masamune Oguri,^{1,6,7} Sherry H. SUYU,^{3,4,8} Kenneth C. Wong,^{3,9} Chien-Hsiu LEE,¹⁰ Jean COUPON,¹¹ Atsunori YoneHARA,¹² Adam S. BOLTON,¹³ Anton T. JAELANI,¹⁴ Masayuki TANAKA,⁹ Satoshi MIYAZAKI,^{9,15} and Yutaka Komiyama^{9,15}

ABOUT CLASSIFY TALK COLLECT RECENTS LAB

Wow - 2 million classifications!! Well done everyone

SPACE WARPS - HSC STATISTICS

66% Complete

5,106 Volunteers

Classifications

Subjects

204,228

Completed Subjects

Lenses found by citizens

Spectroscopic follow-up

- First batch of 23 candidates followed-up with X-Shooter
- ~80% success rate

- Following-up hundreds of lenses with X-Shooter is a bit unrealistic
- Prime Focus Spectrograph (PFS) could help a lot

Lens modeling

- Fit model lens mass, lens and source surface brightness profiles to observed images in different bands
- Lens model: singular isothermal ellipsoid
- Light model: Sérsic profile
- Source model: Sérsic profile
- Future plans: fit for source photo-z

HSC strong lensing: first results

- 20 lenses in HSC survey
- Lens model: NFW (dark matter halo) + Sérsic (stars)
- Use HSC weak lensing to infer stellar-to-halo mass relation
- Put prior on halo mass to break degeneracy between luminous and dark matter

HSC strong lensing: forecast

- 1000 strong lenses from HSC, source redshifts from PFS
- Weak lensing measurements from HSC
- Population model: fitting for the distribution of halo masses, adiabatic contraction efficiency, IMF (Bayesian hierarchical inference method)

We can solve both the IMF and the dark matter profile problems!

Summary

- Strong lensing is a unique probe of matter on scales of ~10kpc
- Current and future surveys, such as HSC, Euclid, LSST will allow us to find thousands of new lenses. New regime: statistical strong lensing
- Measurement of stellar IMF and inner dark matter density profile within reach in the next ~5 years