Atacama Cosmology Telescope Status and perspectives

Loic Maurin

FONDECYT Fellow @ Pontificia Universidad Católica de Chile Rencontres du Vietnam: Windows on the Universe 2018

Non Gaussianity (f_{NL})

How do we look at the CMB?

- Temperature
- Polarisation
- Power Spectrum/map
- Large scales/small scales

Hilton et al. (2018)

Planck collaboration (2018)

Ground based observations

Planck collaboration (2018)

Atacama Desert

Great PWV conditions and high fraction of available sky

POLARBEAR/Simons Array

Cosmology Large

Simons Observatory 🧿

ACT

Simons Observatory (soon)

Google

ACT Collaboration

The Atacama Cosmology Telescope

Cryostat

Thornton et al. (2016)

Credit: Sigurd Naess

Note that small scale grainy structures in the Planck map comes from Planck noise being smoothed by upscaling to ACT resolution.

Α С Т Ρ 0

Credit: Sigurd Naess

Note that small scale grainy structures in the Planck map comes from Planck noise being smoothed by upscaling to ACT resolution.

Ρ

Α

Ν

С

Κ

Observations (s13) - 150 GHz

Observations (s14) - 150 GHz

Analysis (s13-s14)

- Naess et al. (2014): PS and parameters
- Louis et al. (2017): PS and parameters
- van Engelen et al. (2015): Lensing from CIB
- Madhavacheril el al. (2015): Lensing by DM Halos
- Scherwin et al. (2017): Lensing PS
- Allison et al. (2015): Radio Galaxy Bias
- Schaan el al. (2016): kSZ ACTPol+BOSS
- de Bernardis et al. (2017): pairwise kSZ ACTPol+BOSS
- Hilton et al. (2018): SZ catalog
- Datta et al. (submitted): Polarized sources
- Coulton et al. (submitted): NG from secondary anisotropies

Polarization maps are signal dominated

~600 sq-deg (filtered)

Deep56 area Louis et al. (2017)

Constraining power from polarization

FIG. 2. Combined two-season ACTPol lensing power spectrum, coadded across all patches and estimators. The best-fit theory lensing power spectrum has an amplitude of $A_{\text{lens}} = 1.06 \pm 0.15$ (stat.) ± 0.06 (sys.) relative to the *Planck* best-fit ACDM cosmology from the *Planck* temperature and polarization power spectra (which we define to have $A_{\text{lens}} = 1$). The ACTPol best-fit is indicated with a black solid line, and the error bars just include statistical uncertainty. The χ^2 to the best-fit, scaled *Planck* ACDM theory model has a probability to exceed (PTE) of 0.32, suggesting a good fit to the standard ACDM cosmology.

Constraining power on Ω_m, σ_8 and Σm_v combining with BAO

Sherwin et al. (2017)

182 SZ clusters catalog + redshifts from follow-up

kSZ (ACTPol+BOSS)

Schaan et al. (2017)

Pairwise kSZ (ACTPol+BOSS)

0.8

(лл) q

 θ_{disk} [arcmin]

Sources

Polarization for 181 extragalactic sources

Datta et al. (submitted)

Figure 7. *I*, *Q*, and *U* thumbnails (0.02 deg² in area) of six intensity-selected sources that have the strongest signal in polarization. The intensity map temperatures have been scaled down by a factor noted in the top right corner of the *I* thumbnails so as to keep the color scale same for *I*, *Q*, and *U*. The color scale spans $\pm 500 \,\mu$ K for all but the brightest source in the top left panel ($\pm 2000 \,\mu$ K).

Non-Gaussianities from secondary anisotropies

ACTPol (resolution) + Planck (multifrequency)

> Coulton et al. (submitted)

Figure 6. A graphical representation of our joint fit results from tables 1 excluding the lensing-ISW constraint in order to restrict the scales. The solid green line is the values predicted by our model and the dashed green is the null value.

Public data

• Maps

- o s13 + s14
- I, Q, U, hits, noise, lensing
- Beams
- Spectra
- Likelihood
 - CMB
 - Lensing
- Sources
 - masks
 - SZ catalog

ACTPol Data Products at LAMBDA

Show All Hide All

	Two-season data products	
Product Download Page	Description	No. Of Files/Size
Maps	These 128 FITS files are the two-year data from ACTPol and are the maps use to the results presented in Louis et al. (2016). More	128 files, < 148 MB
Lensing Maps	This tarball contains CMB lensing data products from Season 2 of ACTPol observations associated with Sherwin et. al. 2016. More	1 file, 33.58 GB
Masks	The point source masks are maps, in FITS format, with the same footprint and World Coordinate System as the associated ACTPol 148 GHz map. More	1 file 148 MB
Beams	These files represent the beam transforms (Fourier space) and radial profiles (real space) for use with the ACTPol two-season data. The beams are described in Louis et al. 2016. More	1 file, 7.7 MB
	Two season derived data products	_
Product Download Page	Description	No. Of Files/Size
SZ Cluster Catalog	The file E-D56Clusters.fits is a FITS table that combines the information from Tables A1-A3 in the ACTPol two-season cluster catalog paper. More	1 file, 75 KB

ensing Likelihood	This tarball contains the ACTPol lensing power spectrum likelihood More	1 file 2.8 MB		
CMB Likelihood	This is the software used by the ACTPol collaboration to compute the likelihood of cosmological models More	1 file 15.8 MB		
Total Spectra	The ACTPOLEE, TT and TE power spectra More	1 file 15.9 MB		
CMB Spectra	The ACTPol TT, EE and TE CMB-only power spectra More	1 file 4 KB		
ACTPol Data Products				

AGIT OF Data Froundets				
Product Download Page	Description	No. Of Files/Size		
2014 Bandpowers	TT, TE, EE, BB, TB, and EB bandpowers from the first 3 months of ACTPol observations. More	1 files, 8 KB		
2014 Likelihood	Likelihood for TT, TE and EE bandpowers from the first 3 months of ACTPol observations. More	1 file, 11.6 MB		

Show All Hide All

https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm

Observations (s15) - 90/150 GHz

Analysis (s13-s16)

- More data
 - 20% more detectors for s13 and s14
 - o s15
 - s16 (pa2 and pa3 only no 220 GHz!)
- Improved noise model in the pipeline
- 90 GHz
 - consistency check with 150 GHz
 - better at large scale (atmosphere)

Aiola et al. (in prep) Choi et al. (in prep)

Preliminary results: constraining power

EΕ

PRELIMINARY

4000

5000

 $^{-1}$

-2 -

-3

0

1000

2000

3000

Multipole *l*

Figures from Simone Aiola

Aiola et al. (in prep) and Choi et al. (in prep)

Preliminary results: Power Spectrum

Preliminary results: constraining power

Figures from Erminia Calabrese, Steve Choi and Simone Aiola

Aiola et al. (in prep) and Choi et al. (in prep)

Coming next: Multi-frequency on 40% of the sky

