

Search for Higgs beyond the Standard Model with the ATLAS & CMS Detectors Rencontres du Vietnam, Quy Nhon Nikolina Ilic on behalf of the ATLAS and CMS Collaborations Radboud University Aug 8, 2018

Outline

- Introduction
- Beyond Standard Model Higgs theories
- Results for recently published channels

 Focus on novel techniques
- Conclusion

Introduction

Need to extend SM to address issues like hierarchy problem, quantum gravity, baryon asymmetry, dark matter/energy, neutrino masses

Look for BSM physics by

- Looking for deviations from the SM in Higgs properties measurements
- Directly searching for beyond SM objects
 - Additional Higgs bosons decaying to SM particles
 - SM Higgs decays to BSM states (eg. invisible decays)

Introduction

SM Higgs doublet

Additional Field Additional Higgs Bosons

EWS: Additional EW Singlet Model SM 🕂 one scaler EW singlet

Neutral CP Even

EWS significantly constrained by Run 1 Higgs measurements

2HDM: two Higgs doublets Φ_1 and Φ_2

7 parameters: m_h , m_H , m_A , $m_{H^{\pm}}$, m_{12} , $tan\beta$, α Ratio of VEV of Φ_1 and Φ_2 h & H mixing angle

- Models motivated by bounds on FCNC
 - Type I : fermions couple to Φ_2
 - Type II : up type quarks couple to Φ_2 , down-type quarks & charged leptons couple to Φ_1 , Eg: MSSM
- Run 1 SM Higgs results give big constraints on 2HDM. Data prefers alignment limit: $\cos(\beta \alpha) = 0$

2HDM-Minimal Supersymmetric SM (MSSM)

- To reduce parameters define benchmarks defined:
- $m_{h,mod}^{\pm}$: m_h is close to 125 GeV
- hMSSM : measured value of m_h can be used to predict other masses

 In Run 1 excluded many regions of parameter space

	ATLAS	CMS		~36 fb ⁻¹	@13 TeV
Neutral Heavy	WV $\rightarrow \ell \nu q q, \ell \nu \ell \nu$	$ZZ \rightarrow 4\ell, \ell\ell qq, \ell\ell$	νν	15-20 fb ⁻¹	@13 TeV
Aliggs to bosons & fermions	$ZV \rightarrow \ell \ell qq / \nu \nu qq$ $ZZ \rightarrow 4\ell, \ell \ell \nu \nu$	γZ bb		5fb ⁻¹	@13 TeV
	$VV \rightarrow 2j$	$\tau \tau \rightarrow 2\ell, \ell j, j j$		5-20.3fb ⁻¹	@7-8 TeV
	Z/Wh (w h→bb) ZH → (H→bb) γZ	$\begin{array}{l} Zh \rightarrow \ell \ell \tau \tau \\ Zh \rightarrow \ell \ell bb \\ ZA/H \rightarrow \ell \ell bb \end{array}$			Legend
	$\tau \tau \rightarrow 2\ell, \ell j, j j$ tt	γγ μμ ττ			
h	4γ WH bb				
Neutral Higgs to di-Higgs	hh → bbγγ hh → 4b hh → WWγγ hh → bbττ	hh → bbγγ hh → 4b hh→ WW/ZZ +2b hh → bbττ			
		hh $\rightarrow \ell \ell \gamma \gamma$			

	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
Charged Higgs	$H^{\pm} \rightarrow \tau v$	$H^{\pm} \rightarrow \tau \nu$	15-20 fb ⁻¹	@13 TeV
	$\begin{array}{l} H^{\pm} \rightarrow tb \\ H^{\pm\pm} \rightarrow \ell \ell \end{array}$	$H^{\pm} \rightarrow \text{tb}$	5fb ⁻¹	@13 TeV
	$H^{\pm} \rightarrow cs$	$H^{\pm} \rightarrow cs$	5-20.3fb ⁻¹	@7-8 TeV
0000	$VBFH^\pm\toWZ$	$H^{\pm\pm} \rightarrow 4\ell/3\ell\nu$		Legend
				-

ATLAS		CMS
Higgs exotic with MET	$\begin{array}{l} H \rightarrow \gamma \gamma + MET \\ H \rightarrow bb + MET \\ hZ \rightarrow INV (\ell \ell) \\ H \rightarrow Z_d Z_d \end{array}$	hZ → INV ($\ell\ell/bb$) hZ → INV +1/2γ hj → INV +j
X	$H \rightarrow Z (\ell \ell) + MET$	
	VBF h \rightarrow INV hV \rightarrow INV (had) H $\rightarrow \gamma$ +MET H \rightarrow INV (1 jet)	

Rare	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
decays/ LVF	h(125) → φ/ <i>ρ</i> γ	h → τμ	15-20 fb ⁻¹	@13 TeV
$h(Z) \rightarrow \psi/(2S)$	$h(Z) \rightarrow J/\psi\gamma$ or $h(Z) \rightarrow J/\psi\gamma$		5fb ⁻¹	@13 TeV
	$\psi/(23)$ OF $Y(113)$		5-20.3fb ⁻¹	@7-8 TeV
	η γιμγιεγεμ			Legend

Higgs to	ATLAS	CMS
light res.	aa → jj $\gamma\gamma$ aa → bb $\mu\mu$ aa → 4b aa → $\mu\mu\tau\tau$	аа $\rightarrow \mu\mu\tau\tau$ аа $\rightarrow bb\tau\tau$ аа $\rightarrow 4\tau, \mu\mu bb, \mu\mu\tau\tau$ аа $\rightarrow 4\mu$

	ATLAS	CMS		~36 fb ⁻¹	@13 TeV
Neutral Heavy Higgs to bosons & fermions	WV $\rightarrow \ell \nu qq, \ell \nu \ell \nu$ ZV $\rightarrow \ell \ell qq / \nu \nu qq$ ZZ $\rightarrow 4\ell, \ell \ell \nu \nu$ VV $\rightarrow 2j$ Z/Wh (w h \rightarrow bb) ZH \rightarrow (H \rightarrow bb) H [±] \rightarrow h \rightarrow bb γZ $\gamma \gamma$ $\tau \tau \rightarrow 2\ell, \ell j, j j$ tt 4 γ WH bb	$ZZ \rightarrow 4\ell, \ell\ell qq, \ell\ell v$ γZ bb $\tau \tau \rightarrow 2\ell, \ell j, j j$ $Zh \rightarrow \ell \ell \tau \tau$ $Zh \rightarrow \ell \ell b b$ $ZA/H \rightarrow \ell \ell b b$ $\gamma \gamma$ $\mu \mu$ $\tau \tau$	ν	15-20 fb ⁻¹ 5fb ⁻¹ 5-20.3fb ⁻¹	 @13 TeV @13 TeV @7-8 TeV Legend
Neutral Higgs to di-Higgs	$hh \rightarrow bb\gamma\gamma$ $hh \rightarrow 4b$ $hh \rightarrow WW\gamma\gamma$ $hh \rightarrow bb\tau\tau$	hh → bbγγ hh → 4b hh→ WW/ZZ +2b hh → bbττ hh→ ℓℓγγ			14

Neutral Heavy Higgs to bosons

WV→ lvqq

- Is unitarisation of WW scattering at high energy ensured ONLY by h?
- Prominent decay is to W/Z in many BSM models

SM

Neutral Heavy Higgs to bosons

WV→ lvqq

- Is unitarisation of WW scattering at high energy ensured ONLY by h?
- Prominent decay is to W/Z in many BSM models

boosted

resolved

Neutral Heavy $WV \rightarrow Ivqq$ **Higgs to bosons** Background: W+jets and $t\bar{t}$ taken from background-rich control region (CR) • Signal regions (SR) and CR separated using jet mass, number of b-tagged jets, D_2 ۰ $e_2 = \frac{1}{p_{TI}J} \sum p_{Ti} p_{Tj} R_{ij}$ R_{ii} p_{Ti} p_{TJ} boosted resolved

Neutral Heavy Higgs to bosons

WV→ lvqq

- Background: W+jets and $t\bar{t}$ taken from background-rich control region (CR)
- Signal regions (SR) and CR separated using jet mass, number of b-tagged jets, D_2

$$e_2 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} R_{ij}$$

1-prong jet identification (quark-gluon)

Neutral Heavy WV→ lvqq **Higgs to bosons** Background: W+jets and $t\bar{t}$ taken from background-rich control region (CR) • Signal regions (SR) and CR separated using jet mass, number of b-tagged jets, D_2 ۰ p_{Tk} p_{T} p_{TJ} boosted resolved

$$e_2 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} R_{ij}$$

$$e_3 = \frac{1}{p_{TJJ}} \sum p_{Ti} p_{Tj} p_{Tk} R_{ij} R_{ik} R_{jk}$$

Neutral Heavy Higgs to bosons

WV→ lvqq

- Background: W+jets and $t\bar{t}$ taken from background-rich control region (CR)
- Signal regions (SR) and CR separated using jet mass, number of b-tagged jets, D_2

$$e_2 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} R_{ij}$$

$$e_3 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} p_{Tk} R_{ij} R_{ik} R_{jk}$$

2-, 3-prong jet identification (W/Z/H bosons)

Neutral Heavy Higgs to bosons

WV→ lvqq

- Background: W+jets and $t\bar{t}$ taken from background-rich control region (CR)
- Signal regions (SR) and CR separated using jet mass, number of b-tagged jets, D_2

$$e_2 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} R_{ij}$$

$$e_3 = \frac{1}{p_{TJJ}} \sum p_{Ti} p_{Tj} p_{Tk} R_{ij} R_{ik} R_{jk}$$

$$D_2 = \frac{e_3}{(e_2)^3}$$

Neutral Heavy Higgs to bosons

WV→ lvqq

background-rich control region (CR) ing jet mass, number of b-tagged jets, D₂

$$e_2 = \frac{1}{p_{TJ}J} \sum p_{Ti} p_{Tj} R_{ij}$$

$$e_3 = \frac{1}{p_{TJJ}} \sum p_{Ti} p_{Tj} p_{Tk} R_{ij} R_{ik} R_{jk}$$

$$D_2 = \frac{e_3}{(e_2)^3}$$

Neutral Heavy Higgs to bosons

WV→ lvqq

	ATLAS	CMS		~36 fb ⁻¹	@13 TeV
Neutral Heavy	WV $\rightarrow \ell \nu q q, \ell \nu \ell \nu$	$ZZ \rightarrow 4\ell, \ell\ell qq, \ell\ell$	νν	15-20 fb ⁻¹	@13 TeV
& fermions	$ZV \rightarrow \ell \ell q /\nu \nu q $ $77 \rightarrow 4\ell \ell \ell \nu \nu$	γZ		5fb ⁻¹	@13 TeV
	$VV \rightarrow 2j$	$\tau \rightarrow 2\ell, \ell j, j j$		5-20.3fb ⁻¹	@7-8 TeV
	Z/Wh (w h \rightarrow bb) ZH \rightarrow (H \rightarrow bb) γ Z $\gamma\gamma$ $\tau\tau \rightarrow 2\ell, \ell j, jj$ tt 4 γ WH bb	$Zh \rightarrow \ell \ell \tau \tau$ $Zh \rightarrow \ell \ell bb$ $ZA/H \rightarrow \ell \ell bb$ $\gamma \gamma$ $\mu \mu$ $\tau \tau$			Legend
Neutral Higgs to di-Higgs	$hh \rightarrow bb\gamma\gamma$ $hh \rightarrow 4b$ $hh \rightarrow WW\gamma\gamma$ $hh \rightarrow bb\tau\tau$	hh \rightarrow bb $\gamma\gamma$ hh \rightarrow 4b hh \rightarrow WW/ZZ +2b hh \rightarrow bb $\tau\tau$ hh $\rightarrow \ell \ell \gamma \gamma$			

Neutral Higgs to
fermions $\tau\tau \rightarrow 2\ell, \ell j, jj$ Why this channel?

• In MSSM heavy Higgs boson coupling to down-type fermions (τ, b) strongly enhanced for **high tan** β

• Search for hMSSM, $m_{h,mod}^{\pm}$

- Background: jets/leptons faking τ leptons
- SR and CR separated using number of b-tagged jets, transverse mass, D_{ζ}

Supresses W+jets and $t\bar{t}$

Neutral Higgs to fermions

$$\tau \rightarrow 2\ell, \ell j, j j$$

τ

• Final discriminating variable: transverse mass

$$m_{\rm T}^{\rm tot} = \sqrt{m_{\rm T}^2(p_{\rm T}^{\tau_1}, p_{\rm T}^{\tau_2}) + m_{\rm T}^2(p_{\rm T}^{\tau_1}, p_{\rm T}^{\rm miss}) + m_{\rm T}^2(p_{\rm T}^{\tau_2}, p_{\rm T}^{\rm miss})} \qquad m_{\rm T} = \sqrt{2 \, p_{\rm T} \, p_{\rm T}' \, [1 - \cos(\Delta\phi)]}$$

Neutral Higgs to fermions

 $\tau\tau \rightarrow 2\ell, \ell j, j j$

	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
Neutral Heavy	$WV \rightarrow \ell v q q, \ell v \ell v$	$ZZ \rightarrow 4\ell, \ell\ell qq, \ell\ell\nu\nu$	15-20 fb ⁻¹	@13 TeV
& fermions	$ZV \rightarrow \ell \ell qq / \nu \nu qq$ $77 \rightarrow 4\ell \ell \ell \nu \nu$	γZ	5fb ⁻¹	@13 TeV
	$VV \rightarrow 2j$	$\tau \tau \rightarrow 2\ell, \ell j, j j$	5-20.3fb ⁻¹	@7-8 TeV
	Z/Wh (w h \rightarrow bb) ZH \rightarrow (H \rightarrow bb) γ Z $\gamma\gamma$ $\tau\tau \rightarrow 2\ell, \ell j, j j$ tt	$\begin{array}{l} Zh \rightarrow \ell \ell \tau \tau \\ Zh \rightarrow \ell \ell bb \\ ZA/H \rightarrow \ell \ell bb \\ \gamma \gamma \\ \mu \mu \\ \tau \tau \end{array}$		Legend
h	4γ WH bb			
Neutral Higgs to di-Higgs	hh → bbγγ hh → 4b hh → WWγγ hh → bbττ	hh → bbγγ hh → 4b hh → WW/ZZ +2b hh → bbττ		

 $hh \rightarrow \ell \ell \gamma \gamma$

Neutral Higgs to di-Higgs

 $hh \rightarrow bb\gamma\gamma$

Why these channels?

SM Di-Higgs production much lower than single Higgs production

Neutral Higgs to di-Higgs

 $hh \rightarrow bb\gamma\gamma$

SM Di-Higgs production much lower than single Higgs production

Di-Higgs production enhanced in BSM models

- Resonant production: 2HDM, radion, G_{kk^*}
- Non resonant production: modified h coupling
- hh → bbγγ: low background, good mass resolution

BR	bb	WW
bb	33%	
WW	25%	4.6%
ττ	7.4%	2.5%
ZZ	3.1%	1.2%
γγ	0.26%	0.10%

- To separate different SRs for better sensitivity use Multivariate analysis (MVA)
- Inputs: inputs are b-tagging variables, helicity angles, p_{γγ T} /m_{γγjj}, p_{jjT}/m_{γγjj}

Non resonant production < 24 x SM observed

	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
Charged Higgs	$H^{\pm} \rightarrow \tau v$	$H^{\pm} \rightarrow \tau \nu$	15-20 fb ⁻¹	@13 TeV
	$\begin{array}{c} H^{\pm} \rightarrow tb \\ H^{\pm\pm} \rightarrow \ell \ell \end{array}$	$H^{\pm} \rightarrow tb$	5fb ⁻¹	@13 TeV
	$H^{\pm} \rightarrow cs$	$\begin{array}{c} H^{\pm} \rightarrow Z VV \\ H^{\pm} \rightarrow cs \end{array}$	5-20.3fb ⁻¹	@7-8 TeV
20 20	VBF $H^{\pm} \rightarrow WZ$	$H^{\pm\pm} \rightarrow 4\ell/3\ell\nu$		Legend

ATLAS		CMS
Higgs exotic with MET	$\begin{array}{l} H \rightarrow \gamma \gamma + MET \\ H \rightarrow bb + MET \\ hZ \rightarrow INV (\ell \ell) \\ H \rightarrow Z_d Z_d \end{array}$	hZ → INV ($\ell\ell/bb$) hZ → INV +1/2γ hj → INV +j
	$H \rightarrow Z \ (\ell \ell) + MET$	
h	VBF h \rightarrow INV hV \rightarrow INV (had) H $\rightarrow \gamma$ +MET H \rightarrow INV (1 jet)	

Heavy Charged Higgs

$$H^{\pm} \rightarrow \tau v$$

 $H^{\pm} \rightarrow tb$

Why these channels?

- H^{\pm} is in doublet/triplet models
- For $m_{H^{\pm}} > (<) m_{top}$, H^{\pm} produced with t (b)
- H[±] to τν (tb) dominates below (above) top threshold
- ATLAS Run 1: $H^{\pm} \rightarrow tb$ analysis excess of (2.4 σ)
- Test hMSSM and $m_{h,mod}^{\pm}$

To identify τ

- Find jet, match 1 or 3 tracks to it
- Boosted Decision Tree (BDT) separate τ from jets that resemble τ using info on hadronic activity
- Likely-hood based veto separates τ from e

	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
Charged Higgs	$H^{\pm} \rightarrow \tau v$	$H^{\pm} \rightarrow \tau \nu$	15-20 fb ⁻¹	@13 TeV
	$\begin{array}{c} H^{\pm} \rightarrow tb \\ H^{\pm\pm} \rightarrow \ell \ell \end{array}$	$H^{\pm} \rightarrow \text{tb}$	5fb ⁻¹	@13 TeV
	$H^{\pm} \rightarrow cs$	$H^{\pm} \rightarrow cs$	5-20.3fb ⁻¹	@7-8 TeV
	VBF $H^{\pm} \rightarrow WZ$	$H^{\pm\pm} \rightarrow 4\ell/3\ell\nu$		Legend

ATLAS		CMS
Higgs exotic with MET	H → $\gamma\gamma$ +MET H → bb+MET h7 → INV (ℓℓ)	hZ → INV ($\ell\ell/bb$) hZ → INV +1/2γ bi → INV +i
	$H → Z_d Z_d$ H → Z (ℓℓ)+MET	11j -> 11 1 V +j
h	VBF h \rightarrow INV hV \rightarrow INV (had) H $\rightarrow \gamma$ +MET H \rightarrow INV (1 jet)	

Higgs exotic with MET

 $h(125) \rightarrow aa/Z_{dark}Z_{dark}$

- Look for 2HDM H \rightarrow aa process
- Dark sector in SM extensions provides DM candidate, explains positron excesses
- 4ℓ final states have low background. Optimize for different mass regions

Rare	ATLAS	CMS	~36 fb ⁻¹	@13 TeV
decays/ LVF	h(125) $\rightarrow \phi/\rho\gamma$	$h \rightarrow \tau \mu$	15-20 fb ⁻¹	@13 TeV
h	$h(Z) \rightarrow J/\psi\gamma$ or		5fb ⁻¹	@13 TeV
	$\psi/(25)$ of $Y(115)$		5-20.3fb ⁻¹	@7-8 TeV
	Π / τμ/τε/εμ			Legend

Higgs to	ATLAS	CMS	
light res.	aa $\rightarrow jj\gamma\gamma$ aa $\rightarrow bb\mu\mu$ aa $\rightarrow 4b$ aa $\rightarrow \mu\mu\tau\tau$	аа $\rightarrow \mu\mu\tau\tau$ аа $\rightarrow bb\tau\tau$ аа $\rightarrow 4\tau, \mu\mu bb, \mu\mu\tau\tau$ аа $\rightarrow 4\mu$	

 $m_{\mu\mu}$ (GeV)

 $m_{\mu\mu}$ (GeV)

Conclusions

 Many ATLAS & CMS searches for beyond Standard Model physics were explored

• No discoveries yet of BSM Higgs sector

Significant excesses not found, but many stringent limits set in several models