Sensitivity to CP violation 000000

Conclusion

Sensitivity to CP Violation in Lepton Sector with T2K-II and NOvA Experiments

Tran Van Ngoc

Vietnam Neutrino Group, IFIRSE

In cooperation with Dr. Cao Son (KEK) and Ass. Prof. Van Nguyen (IOP & IFIRSE)

Windows on the Universe, Quy Nhon, August 7, 2018

Tran Van Ngoc

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00		00
Outline			

Sensitivity to CP violation

Introduction •0000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

Introduction •0000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

• CP violation (CPV) is a key to unlock this question

Introduction •0000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

- CP violation (CPV) is a key to unlock this question
- In quark sector, small CPV strength $\mathcal{O}(10^{-5})$ leads to small matter-antimatter asymmetry $\mathcal{O}(10^{-18})$ compared to observed value $\mathcal{O}(10^{-10})$

Introduction •0000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

- CP violation (CPV) is a key to unlock this question
- In quark sector, small CPV strength $\mathcal{O}(10^{-5})$ leads to small matter-antimatter asymmetry $\mathcal{O}(10^{-18})$ compared to observed value $\mathcal{O}(10^{-10})$
- Seek for larger sources of CPV!

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
•••••			
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

- CP violation (CPV) is a key to unlock this question
- In quark sector, small CPV strength $\mathcal{O}(10^{-5})$ leads to small matter-antimatter asymmetry $\mathcal{O}(10^{-18})$ compared to observed value $\mathcal{O}(10^{-10})$
- Seek for larger sources of CPV!
- In lepton sector?

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
•••••			
Introduction			

- At the early universe (Big Bang) the amounts of matter and antimatter are supposed to be equal
- Observed universe: matter-antimatter asymmetry

- CP violation (CPV) is a key to unlock this question
- In quark sector, small CPV strength $\mathcal{O}(10^{-5})$ leads to small matter-antimatter asymmetry $\mathcal{O}(10^{-18})$ compared to observed value $\mathcal{O}(10^{-10})$
- Seek for larger sources of CPV!
- In lepton sector?

Introduction 0●000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
CP violation in	lepton sector		

• Neutrino oscillation phenomenon may provide new source of CPV in lepton sector

• 3-flavor neutrino oscillation model

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{CP}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{CP}} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
flavor PMNS matrix mass eigenstates eigenstates

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
0●000	00		00
CP violation in	lepton sector		

• Neutrino oscillation phenomenon may provide new source of CPV in lepton sector

• 3-flavor neutrino oscillation model

• CPV if U_{PMNS} is complex, i.e sin $\delta \neq 0$

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
0●000	00		00
CP violation in	lepton sector		

• Neutrino oscillation phenomenon may provide new source of CPV in lepton sector

• 3-flavor neutrino oscillation model

• CPV if U_{PMNS} is complex, i.e sin $\delta \neq 0$

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00		00
Measurements	at long baseline v	oscillation experime	nts

- Disappearance channels $P(v_{\mu} \rightarrow v_{\mu})$, $P(\bar{v}_{\mu} \rightarrow \bar{v}_{\mu})$: sensitive to θ_{23} and Δm_{32}^2
- Appearance channels $P(v_{\mu} \rightarrow v_{e})$, $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$: sensitive to θ_{13} and δ_{CP}

Messurements	at long baseline 1	v oscillation experime	nte
00000			
Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion

- Disappearance channels $P(\nu_{\mu} \rightarrow \nu_{\mu})$, $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$: sensitive to θ_{23} and Δm_{32}^2
- Appearance channels $P(v_{\mu} \rightarrow v_{e})$, $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$: sensitive to θ_{13} and δ_{CP}
- Search for CPV by comparing the difference: (in vacuum)

$$\begin{aligned} \mathscr{A}_{\mathsf{CP}} &= P(v_{\mu} \to v_{e}) - P(\bar{v}_{\mu} \to \bar{v}_{e}) \\ &= -16s_{12}s_{13}s_{23}c_{12}c_{13}^{2}c_{23}\sin\delta_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32} \end{aligned}$$

Introduction 00000	Experiment Setups 00	Sensitivity to CP violation	Conclusion
Measurements	at long baseline v	[,] oscillation experiment	nts

- Disappearance channels $P(v_{\mu} \rightarrow v_{\mu})$, $P(\bar{v}_{\mu} \rightarrow \bar{v}_{\mu})$: sensitive to θ_{23} and Δm_{32}^2
- Appearance channels $P(v_{\mu} \rightarrow v_{e})$, $P(\bar{v}_{\mu} \rightarrow \bar{v}_{e})$: sensitive to θ_{13} and δ_{CP}
- Search for CPV by comparing the difference: (in vacuum)

$$\begin{aligned} \mathscr{A}_{\mathsf{CP}} &= P(\nu_{\mu} \rightarrow \nu_{e}) - P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}) \\ &= -16s_{12}s_{13}s_{23}c_{12}c_{13}^{2}c_{23}\sin\delta_{CP}\sin\Delta_{21}\sin\Delta_{31}\sin\Delta_{32} \end{aligned}$$

Introduction 00000 Experiment Setups

 $\begin{array}{c} \text{Sensitivity to CP violation} \\ \text{000000} \end{array}$

Conclusion

T2K(-II) and NOvA experiments

Off-axis long baseline neutrino oscillation experiments

T2K(-II): Tokai to Kamioka

NOvA: NuMI Off-axis *v_e* Appearance

Sensitivity to CP Violation in Lepton Sector with T2K-II and NO

Sensitivity to CP violation $_{\rm OOOOOO}$

Conclusion 00

T2K(-II) and NOvA experiments

• Current central goals:

- measure δ_{CP}
- define mass hierarchy (sign of Δm_{32}^2)
- T2K(-II) is proposed to run up to 2026 :
 - collect total $20\times 10^{21}\ \text{POT}$
 - can exclude $sin\delta_{CP} = 0$ at 3σ C.L. or higher

Sensitivity to CP violation 000000

Conclusion 00

T2K(-II) and NOvA experiments

- Current central goals:
 - measure δ_{CP}
 - define mass hierarchy (sign of Δm_{32}^2)
- T2K(-II) is proposed to run up to 2026 :
 - collect total 20×10^{21} POT
 - can exclude $sin\delta_{CP} = 0$ at 3σ C.L. or higher
- NOvA may operate ultil 2024:
 - collect total $72\times10^{20}\ POT$
 - can exclude $sin\delta_{CP} = 0$ at 2σ C.L. or higher

Sensitivity to CP violation 000000

Conclusion 00

T2K(-II) and NOvA experiments

- Current central goals:
 - measure δ_{CP}
 - define mass hierarchy (sign of Δm_{32}^2)
- T2K(-II) is proposed to run up to 2026 :
 - collect total 20×10^{21} POT
 - can exclude $sin\delta_{CP} = 0$ at 3σ C.L. or higher
- NOvA may operate ultil 2024:
 - collect total 72×10^{20} POT
 - can exclude $sin\delta_{CP} = 0$ at 2σ C.L. or higher

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	•0		00
Experiment Se	tups		

- GLoBES: The General Long Baseline Experiment Simulator https://arxiv.org/abs/hep-ph/0204352
- Neutrino mass hierarchy is assumed to be known and normal

Introduction 00000	Experiment Setups	Sensitivity to CP violation	Conclusion 00
Experiment Se	tups		

- GLoBES: The General Long Baseline Experiment Simulator https://arxiv.org/abs/hep-ph/0204352
- Neutrino mass hierarchy is assumed to be known and normal
- Input values of oscillation parameters, taken from http://inspirehep.net/record/1315584?ln=en $\frac{\sin^2 2\theta_{12} \sin^2 2\theta_{13} \sin^2 \theta_{23} \Delta m_{21}^2 (eV^2/c^4) \Delta m_{32}^2 (eV^2/c^4)}{Value \ 0.8704 \ 0.085 \ 0.5 \ 7.6 \times 10^{-5} \ 2.5 \times 10^{-3}}$

Introduction 00000	Experiment Setups	Sensitivity to CP violation	Conclusion 00
Experiment Se	tups		

- GLoBES: The General Long Baseline Experiment Simulator https://arxiv.org/abs/hep-ph/0204352
- Neutrino mass hierarchy is assumed to be known and normal
- Input values of oscillation parameters, taken from http://inspirehep.net/record/1315584?ln=en $sin^2 2\theta_{12} sin^2 2\theta_{13} sin^2 \theta_{23} \Delta m_{21}^2 (eV^2/c^4) \Delta m_{32}^2 (eV^2/c^4)$ Value 0.8704 0.085 0.5 7.6 × 10⁻⁵ 2.5 × 10⁻³
- Constraint on $sin^2 2\theta_{13}$ by reactor experiments: https://arxiv.org/abs/1605.01502
 - Current precision: 6%
 - Ultimate precision: 3%

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	●0		00
Experiment Se	tups		

- GLoBES: The General Long Baseline Experiment Simulator https://arxiv.org/abs/hep-ph/0204352
- Neutrino mass hierarchy is assumed to be known and normal
- Input values of oscillation parameters, taken from http://inspirehep.net/record/1315584?ln=en $\frac{\sin^2 2\theta_{12} \sin^2 2\theta_{13} \sin^2 \theta_{23} \Delta m_{21}^2 (eV^2/c^4) \Delta m_{32}^2 (eV^2/c^4)}{Value \ 0.8704 \ 0.085 \ 0.5 \ 7.6 \times 10^{-5} \ 2.5 \times 10^{-3}}$
- Constraint on $sin^2 2\theta_{13}$ by reactor experiments: https://arxiv.org/abs/1605.01502
 - Current precision: 6%
 - Ultimate precision: 3%

Experiment setup in GLoBES

For T2K-II http://inspirehep.net/record/1478189?ln=en

- Update: flux, operation years, ...
- Efficiencies:
 - v_e sample signal: 66.3%; \bar{v}_e sample signal: 69.7%
 - v_{μ} sample signal: 72.6%; \bar{v}_{μ} sample signal: 80.2%
- Sys. uncertainties: 4% for all signal samples

Efficiencies:

- v_e sample signal: 60.0%; \bar{v}_e sample signal: 71.5%
- v_{μ} sample signal: 31.9%; \bar{v}_{μ} sample signal: 38.0%
- Sys. uncertainties: 5% for all signal samples

 $\begin{array}{c} \text{Sensitivity to CP violation} \\ \text{000000} \end{array}$

Conclusion 00

Experiment setup in GLoBES

For T2K-II http://inspirehep.net/record/1478189?ln=en

- Update: flux, operation years, ...
- Efficiencies:
 - v_e sample signal: 66.3%; \bar{v}_e sample signal: 69.7%
 - v_{μ} sample signal: 72.6%; \bar{v}_{μ} sample signal: 80.2%
- Sys. uncertainties: 4% for all signal samples

For NOvA

http://inspirehep.net/record/1516801?ln=en

- Efficiencies:
 - v_e sample signal: 60.0%; \bar{v}_e sample signal: 71.5%
 - v_{μ} sample signal: 31.9%; \bar{v}_{μ} sample signal: 38.0%
- Sys. uncertainties: 5% for all signal samples

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00	•00000	00
Sancitivity to (P violation		

T2K-II event rates

• The appearance event rates in T2K-II far detector with 10×10^{21} POT *v*-mode: 10×10^{21} POT \bar{v} -mode at three different values of $\delta_{CP} = -\pi/2$, 0, $+\pi/2$.

	δ_{CP}	Total	Signal	Signal	Beam CC	Beam CC	NC
			$ u_{\mu} \rightarrow v_{e} $	$ar{v}_{\mu} ightarrow ar{v}_{e}$	$v_e + \bar{v}_e$	$ u_{\mu} + ar{ u}_{\mu}$	
	$-\pi/2$	558.8	448.6	2.8	73.3	1.8	32.3
<i>v</i> -mode	0	466.3	354.9	4.0	73.3	1.8	32.3
v_e sample	$+\pi/2$	370.9	258.6	4.9	73.3	1.8	32.3
	$-\pi/2$	115.8	19.8	52.3	29.2	0.4	14.1
\overline{v} -mode	0	134.6	16.2	74.7	29.2	0.4	14.1
\overline{v}_e sample	$+\pi/2$	149.3	11.8	93.8	29.2	0.4	14.1

Result from GLoBES

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00	0●0000	00
Sensitivity to (P violation		

NOvA event rates

• The appearance event rates in NOvA far detector with 36×10^{20} POT *v*-mode: 36×10^{20} POT \bar{v} -mode at three different values of $\delta_{CP} = -\pi/2$, 0, $+\pi/2$.

	δ_{CP}	Total	Signal	v_{μ} beam CC	v_{μ} beam NC	v_e beam
					+cosmic	
	$-\pi/2$	266.1	192.4	5.7	39.5	28.5
<i>v</i> -mode	0	239.4	165.7	5.7	39.5	28.5
v_e sample	$+\pi/2$	195.6	121.9	5.7	39.5	28.5
	$-\pi/2$	63	33.8	2.1	13	14.1
$ar{v}$ -mode	0	78.9	49.7	2.1	13	14.1
$ar{v}_e$ sample	$+\pi/2$	87.5	58.3	2.1	13	14.1

Result from GLoBES

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00		00
Sensitivity to	CP violation		

Constraint on θ_{13} from reactor

- Reduce θ_{13} uncertainty from 6% to 3%, fractional region of δ_{CP} values to exclude sin $\delta_{CP} = 0$:
 - At 3σ C.L. for T2K-II: increases from 39.9% to 42.0%
 - At 2σ C.L. for NOvA: increases from 40.8% to 41.4%

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00	000●00	00
Sensitivity to (CP violation		

Combined T2K-II and NOvA

• T2K-II + NOvA + constraint on θ_{13} from reactor: sin $\delta_{CP} = 0$ can be excluded at 4σ C.L. with fractional region of δ_{CP} values up to 32.4%

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000	00	0000€0	00
Sensitivity to (CP violation		

Reduction in systematic uncertainties

• Systematic uncertainties: 2% for both T2K-II and NOvA, CPV can be observed at 5σ C.L. with fractional region of δ_{CP} values:

- 31.2% if $sin^2 \theta_{23} = 0.43$
- 10.4% if $sin^2 \theta_{23} = 0.50$
- 0.0% if $sin^2 \theta_{23} = 0.60$

Introduction	Experiment Setups	Sensitivity to CP violation	Conclusion
00000		00000●	00
Sensitivity to	CP violation		

Removal of wrong-sign backgrounds

• If the wrong-sign backgrounds in v_e and \bar{v}_e samples are removed completely: The sensitivity to CPV at 5σ C.L. with fractional region of δ_{CP} values increases:

- for $\sin^2 \theta_{23} = 0.50$: from 0.0% to 8.1%
- for $\sin^2 \theta_{23} = 0.43$: from 21.4% to 28.6%

Introduction 00000	Experiment Setups	Sensitivity to CP violation	Conclusion ●0
Conclusion			

- With a combined analysis of T2K-II and NOvA at the end of their runs with ultimate constraint on θ_{13} , CP violation can be observed at 4σ C.L. if $\delta_{CP} \sim -\pi/2$.
- Precise measurement of θ_{13} and reduction in systematic uncertainty play a crucial role in searching for CPV.

- With a combined analysis of T2K-II and NOvA at the end of their runs with ultimate constraint on θ_{13} , CP violation can be observed at 4σ C.L. if $\delta_{CP} \sim -\pi/2$.
- Precise measurement of θ_{13} and reduction in systematic uncertainty play a crucial role in searching for CPV.
- Particle identification and decrease in wrong-sign background are significant to improve the sensitivity to CPV.

- With a combined analysis of T2K-II and NOvA at the end of their runs with ultimate constraint on θ_{13} , CP violation can be observed at 4σ C.L. if $\delta_{CP} \sim -\pi/2$.
- Precise measurement of θ_{13} and reduction in systematic uncertainty play a crucial role in searching for CPV.
- Particle identification and decrease in wrong-sign background are significant to improve the sensitivity to CPV.

Sensitivity to CP violation

Conclusion 00

Thank you very much for your attention! YNHO IETNAM

Sensitivity to CP Violation in Lepton Sector with T2K-II and NO