Final Results from the OPERA Experiment in the CNGS Neutrino Beam

180 physicists, 27 institutions in 11 countries

Koichi Kodama for the OPERA collaboration, Aichi University of Education Windows on the Universe 2018 @ Quy Nhon, Vietnam 2018-08-07

Main Physics Goal

Detect τ decay from v_τCC in emulsion @LNGS

Direct detection of $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode.

The CNGS beam

■ Tutuned for v_{τ} appearance at LNGS (L ~ 730 km) → Maximize the number of v_{τ} CC interactions.

• $<E_{v}>= 17GeV \leftarrow \tau$ production threshold at ~3.5GeV

The OPERA Detector in LNGS Underground

Target = 150k ECC bricks (initial mass ~1.25kt)

OPERA can Identify Three Netrino Flavours

Summary of Event Statistics

		2008	2009	2010	2011	2012	Total
POT (´ 10 ¹⁹)		1.74	3.53	4.09	4.75	3.86	17.97
n interactions		1698	3693	4248	5131	3923	19505
analyzed events	0m	150	255	278	291	223	1197
	1m	543	1024	1001	1031	807	4406
	Total	693	1279	1279	1322	1030	5603

5v_τ Appearance Observation among 5400 Analyzed Interactions

Discovery of v_{τ} Appearance

PRL 115, 121802 (2015)

PHYSICAL REVIEW LETTERS

week ending 18 SEPTEMBER 2015

ട്ട്

Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

	Expected b	Expected signal	Observed		
Charm	Had. re-interac.	Large μ -scat.	Total		
0.017 ± 0.003	0.022 ± 0.006	—	0.04 ± 0.01	0.52 ± 0.10	3
0.17 ± 0.03	0.003 ± 0.001	_	0.17 ± 0.03	0.73 ± 0.14	1
0.004 ± 0.001	—	0.0002 ± 0.0001	0.004 ± 0.001	0.61 ± 0.12	1
0.03 ± 0.01	—	-	0.03 ± 0.01	0.78 ± 0.16	
0.22 ± 0.04	0.02 ± 0.01	0.0002 ± 0.0001	0.25 ± 0.05	2.64 ± 0.53	5
	$\begin{array}{c} \text{Charm} \\ 0.017 \pm 0.003 \\ 0.17 \pm 0.03 \\ 0.004 \pm 0.001 \\ 0.03 \pm 0.01 \\ 0.22 \pm 0.04 \end{array}$	Expected bCharmHad. re-interac. 0.017 ± 0.003 0.022 ± 0.006 0.17 ± 0.03 0.003 ± 0.001 0.004 ± 0.001 $ 0.03 \pm 0.01$ $ 0.22 \pm 0.04$ 0.02 ± 0.01	Expected backgroundCharmHad. re-interac.Large μ -scat. 0.017 ± 0.003 0.022 ± 0.006 $ 0.17 \pm 0.03$ 0.003 ± 0.001 $ 0.004 \pm 0.001$ $ 0.0002 \pm 0.0001$ 0.03 ± 0.01 $ 0.22 \pm 0.04$ 0.02 ± 0.01 0.0002 ± 0.0001	Expected backgroundCharmHad. re-interac.Large μ -scat.Total 0.017 ± 0.003 0.022 ± 0.006 $ 0.04 \pm 0.01$ 0.17 ± 0.03 0.003 ± 0.001 $ 0.17 \pm 0.03$ 0.004 ± 0.001 $ 0.0002 \pm 0.0001$ 0.004 ± 0.001 0.03 ± 0.01 $ 0.03 \pm 0.01$ 0.03 ± 0.01 0.22 ± 0.04 0.02 ± 0.01 0.0002 ± 0.0001 0.25 ± 0.05	$\begin{array}{ c c c c c c } \hline & Expected background & Expected signal \\ \hline Charm & Had. re-interac. & Large μ-scat. & Total \\ \hline 0.017 \pm 0.003 & 0.022 \pm 0.006 & - & 0.04 \pm 0.01 & 0.52 \pm 0.10 \\ 0.17 \pm 0.03 & 0.003 \pm 0.001 & - & 0.17 \pm 0.03 & 0.73 \pm 0.14 \\ \hline 0.004 \pm 0.001 & - & 0.0002 \pm 0.0001 & 0.004 \pm 0.001 & 0.61 \pm 0.12 \\ \hline 0.03 \pm 0.01 & - & - & 0.03 \pm 0.01 & 0.78 \pm 0.16 \\ \hline 0.22 \pm 0.04 & 0.02 \pm 0.01 & 0.002 \pm 0.0001 & 0.25 \pm 0.05 & 2.64 \pm 0.53 \\ \hline \end{array}$

5 v_{τ} events observation with background 0.25 events $P_{value} = 1.1 \times 10^{-7} \rightarrow 5.1\sigma$ significance

New Analysis to reduce Statistical Uncertainties Candidate Selection with Looser Kinematical Cuts

Variable	$\tau \to 1 h$	$\tau \to 3h$	$\tau \to \mu$	$\tau \rightarrow e$
$z_{dec}~(\mu m)$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$
θ_{kink} (rad)	> 0.02	> 0.02	> 0.02	> 0.02
$p_{2ry} \ (GeV/c)$	> 1	> 1	> 1	>1
$p_{2ry}^T \ (GeV/c)$	> 0.15	/	> 0.1	> 0.1

- Minimum selection to limit contribution from had. int. and large angle scattering bkg
- Negligible additional background from K/π decays
- n S/B reduced from ~10 to ~3

		Expected ba				
Channel	Charm	Hadron reinteraction	Large μ scattering	Total	ν_{τ} expected	Observed
$\tau \to 1h$	0.15 ± 0.03	1.28 ± 0.38		1.43 ± 0.39	2.96 ± 0.59	6
$\tau \rightarrow 3h$	0.44 ± 0.09	0.09 ± 0.03		0.52 ± 0.09	1.83 ± 0.37	3
$\tau \rightarrow \mu$	0.008 ± 0.002		0.016 ± 0.008	0.024 ± 0.008	1.15 ± 0.23	1
$\tau \rightarrow e$	0.035 ± 0.007			0.035 ± 0.007	0.84 ± 0.17	
Total	0.63 ± 0.10	1.37 ± 0.38	0.016 ± 0.008	2.0 ± 0.4	6.8 ± 1.4	10

8.8 events expected \rightarrow 10 events observed

PRL 120,211801(2018)

5 More v_{τ} Candidates

event 10123059807

Multivariate Analysis based on Boosted Decision Tree

Kinematical variables used for the analysis.

PHYSICAL REVIEW LETTERS 120, 211801 (2018)

TABLE IV. Kinematical variables and BDT response for all ν_{τ} candidates.

Brick ID	72 693	29 570	23 543	92 217	130 577	77 152	27 972	26 670	136 759	4838
Channel	$\tau \rightarrow 1h$	$\tau \rightarrow 3h$	$\tau ightarrow \mu$	$\tau \rightarrow 1h$	$\tau \rightarrow 3h$	$\tau \rightarrow 3h$				
z_{dec} (μ m)	435	1446	151	406	630	430	652	303	-648	407
$p_{\rm miss}^T ({\rm GeV}/c)$	0.52	0.31		0.55	0.30	0.88	1.29	0.46	0.60	> 0.50
ϕ_{lH} (deg)	173	168		166	151	152	140	143	82	47
p_{2rv}^T (GeV/c)	0.47		0.69	0.82	1.00	0.24	0.25	0.33		
p_{2ry} (GeV/c)	12	8.4	2.8	6.0	11	2.7	2.6	2.2	6.7	> 6.3
θ_{kink} (mrad)	41	87	245	137	90	90	98	146	231	83
$m (\text{GeV}/c^2)$		0.80		1.2	> 0.94				1.2	> 0.94
γ at decay vtx	2	0	0	0	0	1	0	0	0	2
charge 2rv			_1							
BD1 response	0.32	-0.05	0.37	0.12	0.35	0.18	-0.25	-0.10	-0.04	-0.03

The BDT response is a value between +1(signal-like) and -1(background-like)

PRL **120**,211801(2018)

Final Results on v_{τ} Appearance

An Event with Three Vertices without any muon in the final state

Expected Yield and Multivariate Analysis

First Δm_{23}^2 Measurement in Appearance Mode

Assumptions :

- **n** maximal mixing $\rightarrow sin^2(2\theta_{23}) = 1$
- **n** v_{τ} cross section as in Genie v2.6 default $\rightarrow \langle \sigma_G \rangle = (4.29 \pm 0.04) \times 10^{-36} cm^{21}$

Tau Neutrino CC Cross Section

First measurement with negligible contamination from anti- v_{τ}

v_{τ} Lepton Number

Phys. Rev. D89(2014)051102

Muon chrge is negative with $P_{\mu}=2.8\pm0.2$ GeV/c

" $\overline{v_{\tau}}$ CC int due to $\overline{v_{\mu}} \rightarrow \overline{v_{\tau}}$ oscillations, with its μ 's charge is mis-identified or not-measured" is also taken into account in BG. = 0.0024±0.0005

A significance of having observed $\tau \rightarrow \mu^{-}$ is 3.7 σ . First direct evidence for the v_{τ} lepton number

$\nu_{\mu} \rightarrow \nu_{e}$ Oscillation

Summary

- OPERA aimed to detect the appearance of v_{τ} by neutrino oscillation.
- The CNGS v_u beam exposed to 1.25kton Pb+emulsion targets, L=730km.
- **5** v_{τ} events were reported by 2015 \rightarrow 5.1 σ significance.
- After the appearance observation, new selection to increase v_{τ} statistics → improve Δm^2 and $\sigma_{\tau}CC$ accuracy.
- **5** new candidates, thus total 10 v_r events are the final output from OPERA.
 - ν_τ appearance significance reached 6.1σ
 - $\Delta m^2 = (2.7^{+0.7}_{-0.6}) \times 10^{-3} eV^2 \leftarrow$ The first from appearance experiment
 - $\sigma_{\tau} = (5.1^{+2.4}_{-2.0}) \times 10^{-38} \ cm^2 \leftarrow$ with negligible contamination of $\overline{\nu_{\tau}}$
 - one event with $\tau \rightarrow \mu^- \leftarrow$ first v_{τ} lepton number observation.
- $v_{\mu} \rightarrow v_{e}$ analysis have been performed and 35 v_{e} were found.

hank you for your attention!

Image taken using an **OPERA nuclear emulsion film** with a pinhole hand made camera courtesy by Donato Di Ferdinando

backup slides

Input Variables for the Multivariate Analysis in the $\tau \rightarrow$ h Decay Channel

"golden" → candidates passing the tight selection cuts "silver" → newly found candidates with looser cuts

Multivariate Analysis based on Boosted Decision Tree

PRL **120**,211801(2018)