Search for Vector-Like Quarks

Erich W. Varnes University of Arizona for the ATLAS Collaboration

Recontres du Vietnam Quy Nhon, Vietnam August 7, 2018

Why Vector-Like Quarks?

- VLQ are colored, fractionally-charged fermions that are nonchiral under SU(2)
 - why search for these particular particles?
- Well-motivated:
 - appear in many BSM models that address the naturalness issue (Little Higgs, extra dimensions, etc)
 - (maybe) explain fermion mass hierarchy
- Allowed
 - not constrained by Higgs measurements
- Accessible at the LHC
 - mass $< \sim 2$ TeV to preserve naturalness

VLQ Phenomenology

- Both "normal" (-1/3, 2/3) and "exotic" (-4/3, 5/3) charges possible $B T B^{-4/3}, Y T^{5/3}, X$
- Can appear as SU(2) singlets, doublets, or triplets
- Natural models tend to favor coupling to 3rd-gen SM quarks
- Pair (single) production via QCD (EW) interactions

Rencontres du Vietnam August 7, 2018

VLQ Phenomenology

- Both charged- and neutral-current decays are possible for *B* and *T*:
 - $B \rightarrow Zb$, Hb, Wt
 - $T \rightarrow Zt$, Ht, Wb

Wide variety of potential signatures

• BRs are constrained in some models

But the general case should be considered as well

General Strategy

- Searches are typically targeted toward a particular VLQ in a particular decay mode
 - often substantial cross-sensitivity exists
- Backgrounds estimated using:
 - MC for irreducible sources (e.g. Pythia, Sherpa, POWHEG, MC@NLO...)
 - data-driven methods for reducible sources (i.e. fake/nonprompt leptons and electron charge misID)
- Data assessed for evidence of VLQ by either counting number of events passing selection or from the distribution of a sensitive variable
- Limits are set at 95% CL using the CL_S method

Searches for VLQ Pair Produciton

Search for $T \rightarrow Ht + X$

- Two separate topologies considered: 0-lepton and 1-lepton
 - E_{Tmiss} > 200 GeV if 0-leptons
 - *Ht* signature: $\geq 2 b$ -tagged jets
- Several signal regions defined, based on:
 - number of *b*-tagged jets
 - number of R = 1.0 jets
 consistent with Higgs
 or top decay
 - kinematic variables
 - these provide sensitivity to both low- and high-mass signals

JHEP 07 (2018) 089

Search for $T \rightarrow Ht + X$

- Good agreement between observed and expected background in all regions
 - i.e. no sign of VLQ
- Resulting limits:

JHEP 07 (2018) 089

Most sensitive to $T \rightarrow Ht$ (as expected)

JHEP 10 (2017) 141

Search for $T \rightarrow Wb + X$

- Final-state objects are similar to $T \rightarrow Zt$ search
 - one lepton, \geq 3 jets (\geq 1 *b*-tagged), \geq 1 *W*-candidate jet, E_{Tmiss}
- Optimized for *Wb* by:
 - reconstructing *v* momentum, and requiring $\Delta R(l, v) < 0.7$ and $S_T > 1800 \text{ GeV}$

Search for $T \rightarrow Wb + X$

• Leptonically-decaying T candidate mass used to test for signal

JHEP 10 (2017) 141

JHEP 08 (2017) 052

Search for $T \rightarrow Z(\rightarrow vv)t$

• One lepton, \geq 4 jets (\geq 1 *b*-tagged), E_{Tmiss} > 300 GeV

Validation regions require ==1 large-R jet Kinematic selections favor a particular bkg

Signal region requires >1 large-R jet

Search for $Z \rightarrow \ell \ell$ final states

 Select events with Z→ℓℓ candidate, ≥ 2 b-tagged jets, large-R jets

ATLAS-EXOT-2016-35

$\frac{\text{ATLAS-EXOT-2017-34}}{\text{Search for } B \longrightarrow Wt + X}$

- Search optimized for high-mass *B*
 - 1 lepton, \geq 4 jets (\geq 1 *b*-tagged), \geq 1 large-R jet, $S_T >$ 1.2 TeV

Rencontres du Vietnam August 7, 2018

ATLAS-EXOT-2016-16 Search using same-sign leptons

- Events with 2 like-charge leptons are rare in SM
 - low background → sensitive to many BSM effects, incl. VLQ
- Challenge: understanding of rare backgrounds: *e* charge mis-ID, fake/non-prompt leptons
- Multiple SRs defined
 - provides sensitivity to *B*, *T*, and *T*^{5/3} VLQ

Region name	N_{j}	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
VR1b2ℓ	≥ 1	1	2	++ or	$400 < H_{\rm T} < 2400 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR1b2ℓ	≥ 1	1	2	++ or	$H_{\rm T}$ > 1000 GeV and $E_{\rm T}^{\rm miss}$ > 180 GeV
VR2b2l	> 2	2	2	++ or	$H_T > 400 \text{ GeV}$
SR2 <i>b</i> 2ℓ	≥ 2	2	2	++ or	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
	_		•		
VR362ℓ	≥ 3	≥ 3	2	++ or	$400 < H_{\rm T} < 1400 \text{ GeV or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR3b2ℓ_L	≥ 7	≥ 3	2	++ or	$500 < H_{\rm T} < 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 40 \text{ GeV}$
SR3 <i>b</i> 2ℓ	≥ 3	≥ 3	2	++ or	$H_{\rm T} > 1200 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 100 \text{ GeV}$
VD1621	N 1	1	2	0.77	$400 \leq H_{\odot} \leq 2000 \text{ GeV}$ or $E^{\text{miss}} \leq 40 \text{ GeV}$
VK105t	21	1	5	ally	$400 < H_{\rm T} < 2000 {\rm GeV}$ of $L_{\rm T} < 40 {\rm GeV}$
SR1b3ℓ	≥ 1	1	3	any	$H_{\rm T} > 1000 \text{ GeV}$ and $E_{\rm T}^{\rm miss} > 140 \text{ GeV}$
VR2 <i>b</i> 3ℓ	≥ 2	2	3	any	$400 < H_{\rm T} < 2400 \text{ GeV} \text{ or } E_{\rm T}^{\rm miss} < 40 \text{ GeV}$
SR2b3l	> 2	2	3	any	$H_T > 1200 \text{ GeV}$ and $E_T^{\text{miss}} > 100 \text{ GeV}$
5112000		-	2	uiij	
VR3 <i>b</i> 3ℓ	≥ 3	≥ 3	3	any	$H_{\rm T}$ > 400 GeV
SR3 <i>b</i> 3ℓ L	≥ 5	≥ 3	3	any	$500 < H_T < 1000 \text{ GeV}$ and $E_T^{\text{miss}} > 40 \text{ GeV}$
SR3b3l	> 3	> 3	3	any	$H_{\rm T} > 1000 \text{ GeV}$ and $E_{\rm m}^{\rm miss} > 40 \text{ GeV}$
	2.0	20		uiij	

ATLAS-EXOT-2016-16 Search using same-sign leptons

• No significant excess seen. Resulting limits:

ATLAS-EXOT-2017-14 All-Hadronic Search

- Small-R jets combined into variable-size large-R jets
 - NN used to identify *W*,*Z*,*H*,*t*, and bkg jets

Rencontres du Vietnam August 7, 2018

ATLAS-CONF-2018-032 $B\overline{B}$ and $T\overline{T}$ Search Combination

- Statistical combination of all the pair-production searches maximizes the sensitivity
 - selections modified in some cases to avoid overlaps

$m_T > 1.31 \text{ TeV} (\text{singlet})$ > 1.31 TeV (any BR)

 $m_B > 1.22 \text{ TeV} (\text{singlet})$ > 1.03 TeV (any BR)

Searches for single VLQ production

Search for single VLB production

- Cross section depends on VQq coupling
- Can become dominant mechanism at high VLQ mass:

• Search focussed on $B \rightarrow H(\rightarrow \gamma \gamma)b + X$

ATLAS-CONF-2018-024

Other single VLQ searches

• Some of the searches already discussed can be interpreted in the context of single VLQ

Summary

- ATLAS is pursuing a broad search for vector-like quarks
 - using multiple channels to cover all possible decay modes
- No evidence for their existence uncovered so far
 - masses below 1 TeV excluded in the most common models
- Still to come:
 - further updates using the 2017/18 data samples
 - + including channels not presented here

Backup

ATLAS-CONF-2016-104 Search for $T \rightarrow Ht + X$

• This analysis includes an example of the power of fitting multiple regions simultaneously

Let $t\overline{t} + \ge 1b$

Events Data ATLAS Preliminary 10^{7} + light-jets $\sqrt{s} = 13 \text{ TeV}, 13.2 \text{ fb}^{-1}$ tt + ≥ 1c tt + ≥_1b 10⁶ Validation regions Non-tt Post-fit (Bkg-only) 10^{5} ////, Total Bkg unc. 10⁴ 10^{3} normalization float 10² 10 Data / Bkg 1.5 0.5 B 01, 0J, 6j, 3b II, 0J, 5j, ≥4b 11, 1J, 5j, ≥4b l, ≥2J, 5j, ≥4b 0I, 0J, 6j, ≥4b 11, 1J, 5j, 3b II, ≥2J, 5j, 3b 01, 0J, 6j, 2b 0I, 1J, 6j, 2b 0I, 1J, 6j, 3b Ol, 1J, 6j, ≥4b 0I, ≥2J, 6j, 2b 0I, ≥2J, 6j, 3b JI, ≥2J, 6j, ≥4b 11, 0J, 5j,

Fitted normalization is within initial uncertainties

ATLAS-CONF-2016-032 Search using same-sign leptons

• Limits on $T^{5/3}$ pair production:

ATLAS-CONF-2017-015

Definition of m_{T2}

$$m_{T2} \equiv \min_{\vec{q}_{Ta} + \vec{q}_{Tb} = \vec{p}_T^{\text{miss}}} \left\{ \max(m_{Ta}, m_{Tb}) \right\}$$

• Two versions used in the analysis:

For ttbar to dileptons,

For W bosons decaying to hadronic tau

