

Searches for electroweak production of supersymmetric particles with ATLAS

Dr Sarah Williams, on behalf of the ATLAS collaboration

Introduction

- This talk will summarize the status of ATLAS searches for electroweak SUSY production in run II.
- Increasing data-set sizes in run II have opened up sensitivity to:
 - New previously unexplored signal processes/decay channels.
 - Challenging areas of phase space.

In the interest of time, this talk will focus on a few new results and the innovations/ improvements that have enhanced our run-II sensitivity

Motivation for (electroweak) supersymmetry

- Supersymmetry provides a well-motivated candidate for BSM physics:
 - Dark matter candidate
 - Solution to the hierarchy problem (subject to naturalness constraints)
- Electroweak processes refer to the production of sleptons and electroweakinos.
- Electroweakinos are superpositions of bino, wino and higgsino fields:
 - Charginos $\tilde{\chi}_i^{\pm}$ (i=1,2)
 - Neutralinos $\tilde{\chi}_i^0$ (i=1,2,3,4)

https://arxiv.org/abs/1407.5066

EWK SUSY processes have lower production cross-sections but promising discovery channel if squarks/gluinos heavy...

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP (p)MSSM

- Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.
- Pair production of electroweakinos/ sleptons can give a wide range of topologies

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Stable (RPC) LSP

- Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.
- Pair production of electroweakinos/ sleptons can give a wide range of topologies

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

(2) $p \xrightarrow{\chi_1^{\pm}} \tilde{\chi}_1^{0}$

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP (p)MSSM

Stable (RPC) LSP

- Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.
- Pair production of electroweakinos/ sleptons can give a wide range of topologies

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

(3) $p = \begin{pmatrix} \chi_1^{\pm} & W^* & \chi_1^{q} \\ \chi_1^{\pm} & W^* & \chi_1^{q} \\ \chi_2^{0} & Z^* & \chi_\ell^{q} \\ \chi_1^{0} & \chi_1^{0} \\ \chi_1^{0} & \chi_1^{0} \end{pmatrix}$

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP (p)MSSM

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

(4)

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

• Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

Assuming that LSP is a weakly interacting neutral particle => two options commonly feature in LHC simplified models for EWK SUSY :

Often assumed in (1) $\tilde{\chi}_1^0$ is LSP

 Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.

Stable (RPC) LSP

- 1. Bino-like LSP with wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ that decay via gauge bosons or sleptons ("wino-bino" scenario).
- 2. Wino-like LSP with nearly degenerate $\tilde{\chi}_1^{\pm} \Rightarrow$ "disappearing track" signature.
- 3. Higgsino-like nearlydegenerate $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ triplet => "compressed" searches or disappearing track.
- 4. Direct slepton production

- Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.
- Pair production of electroweakinos/ sleptons can give a wide range of topologies

- Assuming pure states, LSP can be bino-like, wino-like or higgsino-like.
- Pair production of electroweakinos/ sleptons can give a wide range of topologies
- LSP can decay via RPV λ coupling to leptonic final states

Typical electroweak SUSY search

General SUSY analysis strategy already introduced in talk by Antonia Strübig

• Target signal scenario in decay channel with X leptons + Y jets + Z b-tagged jets $(\pm \vec{p}_T^{miss})$ (where X,Y,Z may be 0 or unconstrained), then define:

Image credit: 1806.04030

- 1. (Binned-) **signal regions** (SRs) to search for an excess of data over predictions.
- 2. **Control regions** (CRs) to extract normalization of dominant MC backgrounds.
- 3. Validation regions (VRs) to check background modelling.
- ...plus additional data-driven background estimates...
- Results interpreted using **simplified models** for the signature of interest.

ATLAS Run II electroweak searches

Table only includes searches for prompt EWK SUSY decays-> for long-lived searches see talk by Karri Dipetrillo

Signal	Decay mode	Channel	Lumi [fb ⁻¹]	Details
$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}$	WW (RPC) WW (RPV $\widetilde{\chi}_1^0$ decay)	$2I + \vec{p}_T^{miss}$ $4I$	80 36	ATLAS-CONF-2018-042 arXiv:1804.03602
$\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}$	WZ (RPC) WZ (RPV $\widetilde{\chi}_1^0$ decay)	2I +ISR + \vec{p}_T^{miss} 2I+jets/3I+ \vec{p}_T^{miss} 2I+jets/3I+ \vec{p}_T^{miss} 4I	36 36 36 36	Phys. Rev. D 97 (2018) 052010 (*) <u>arXiv:1803.02762</u> <u>arXiv:1806.02293</u> (RJR) <u>arXiv:1804.03602</u>
$\widetilde{\chi}_1^{\pm}\widetilde{\chi}_2^0 \ /\widetilde{\chi}_1^{\pm}\widetilde{\chi}_1^{\mp}$	Sleptons	$2 /3 + \overrightarrow{p}_T^{miss}$ 2 τ	36 36	<u>arXiv:1803.02762</u> Eur. Phys. J. C 78 (2018) 154
ĤĤ	ZZ/hh + $\tilde{G}\tilde{G}$ (GGM/GMSB)	4b 4l	36 36	<u>arXiv:1806.04030</u> <u>arXiv:1804.03602</u>
Zh	h-> neutralinos	2l+photon(s)	80	ATLAS-CONF-2018-019
$ \begin{split} \tilde{l}\tilde{l} & (\tilde{l} = \tilde{e}, \tilde{\mu}) \\ \tilde{l}\tilde{l} & (\tilde{l} = \tilde{e}, \tilde{\mu}) \end{split} $	RPC RPV	2I (+ISR) + \vec{p}_T^{miss} 4I	36	arXiv:1803.02762 + (*) arXiv:1804.03602

=> Already achieved rich search programme in terms of signal topology, RPC+RPV and different (N)LSP compositions (i.e. wino-bino, higgsino). The rest of this talk will discuss the three most recent results in more detail...

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ$ using recursive jigsaw reconstruction (RJR)

4 SRs targeting different mass splittings (Δm) between the $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{0}$ and the LSP.

300

200

500

600

 $m_{\widetilde{\chi}^{\pm}_{\text{\tiny I}}/\widetilde{\chi}^0_{\text{\tiny C}}} \, [\text{GeV}]$

700

400

foo

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow WZ$ using recursive jigsaw reconstruction (RJR)

- Excesses seen in SRs targeting low and compressed mass splittings.
- Need to follow up with more data.

Chargino pair production $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{1}^{\mp} \rightarrow WW\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}$

and jet multiplicity greatly improves sensitivity

ATLAS-CONF-2018-038

New variables: object-based \vec{p}_T^{miss} significance

- Indicates the degree to which the reconstructed E_T^{miss} is consistent with momentum resolution and particle identification efficiencies.
- Event-based significance: $S = \frac{E_T^{miss}}{\sqrt{H_T}}$ or $S = \frac{E_T^m}{\sqrt{\Sigma}}$
- **Object-based definition** determines S from the log-likelihood ratio that the reconstructed E_T^{miss} is consistent with the hypothesis of 0 real E_T^{miss} , based on the full event composition.

New definition greatly improved background suppression in the 1-jet bins (particularly for ee,µµ events where Z+jets is problematic)=> RH plot shows same-flavour 1-jet SRs...

Searches with photons: Zh with $h \rightarrow$ neutralinos

<u> ATLAS-CONF-2018-019</u>

Search for EWK SUSY through exotic Higgs decays

- Search for exotics Higgs decays in GMSB where 125 GeV Higgs decays to neutralinos that then decay to gravitinos+photon(s) (GMSB) or singlino+photon(s) (nMSSM)
- Improved limits on $\sigma/\sigma_{SM} x BR$ for $h \rightarrow \gamma + E_T^{miss}$ and $h \rightarrow \gamma \gamma + E_T^{miss}$

Background estimates for 2I+ \vec{p}_T^{miss} + $\gamma(\gamma)$

Background	Estimation method		
Electron faking a photon $(WZ \rightarrow evll)$	Data-driven (see below)	=> data-driven	
SM $Z\gamma$	Data-driven (CR)	all dominant	
Jet faking a photon (Z+jets)	Dåta-driven "photon-factor"	backgrounds!	
Other SM processes with $2I+\gamma$	MC (negligible)		

WZ background in SR estimated scaling ll + eevents by datadriven $e \rightarrow \gamma$ misidentification rate!

Summary: where could (EWK) SUSY be hiding?

Run II results extended the exclusion limits in a number of EWK SUSY scenarios. But there are still lots of interesting areas of phase space to explore...

- Challenging decay modes (i.e. decays through Higgs) and new final states.
- 2. Compressed and moderately compressed regions of phase space.
- Mixed LSP scenarios (not currently included in simplified models)

Above: summary plot for wino-like $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0}$ and bino-like $\widetilde{\chi}_{1}^{0}$

Important message: do not confuse limits in simplified models with real limits on SUSY masses!

Summary: where could (EWK) SUSY be hiding?

Run II results extended the exclusion limits in a number of EWK SUSY scenarios. But there are still lots of interesting areas of phase space to explore...

- 1. Challenging decay modes (i.e. decays through Higgs) and new final states.
- 2. Compressed and moderately compressed regions of phase space.
- Mixed LSP scenarios (not currently included in simplified models)

Above: summary plot for wino-like $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0}$ and bino-like $\widetilde{\chi}_{1}^{0}$

Important message: do not confuse limits in simplified models with real limits on SUSY masses!

Summary: where could (EWK) SUSY be hiding?

Run II results extended the exclusion limits in a number of EWK SUSY scenarios. But there are still lots of interesting areas of phase space to explore...

- 1. Challenging decay modes (i.e. decays through Higgs) and new final states.
- 2. Compressed and moderately compressed regions of phase space.
- 3. Mixed LSP scenarios (not currently included in simplified models)

Above: summary plot for wino-like $\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{2}^{0}$ and bino-like $\widetilde{\chi}_{1}^{0}$

Important message: do not confuse limits in simplified models with real limits on SUSY masses!

Conclusions

- 36 fb⁻¹ in 2015-2016 enabled:
 - New limits on higgsinos and compressed scenarios
 - Extension of run I limits in many scenarios.
 - Excesses in some low/compressed SRs.
- 80 fb⁻¹ in 2015-2017 enabled:
 - First ATLAS run II results for several challenging signatures.

The success of our electroweak SUSY programme in run II owes a lot to those who have worked hard in operations, computing and combined performance areas throughout run II -> a team effort!

Maybe the O(150) fb⁻¹ expected by the end of run II will unearth convincing evidence for supersymmetry...

Backup: ATLAS SUSY summary plot

A Ju	TLAS SUSY Sea	arches*	- 95%	% CI	L Lov	wer Limits					ATLAS Preliminary $\sqrt{s} = 7, 8, 13$ TeV
	Model	e, μ, τ, γ	′ Jets	E _T	$\int \mathcal{L} dt$ [f]	- ⁻] Ma	ss limit		$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
ñ	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$	0 mono-jet	2-6 jets 1-3 jets	Yes Yes	36.1 36.1	$\tilde{q} = [2\times, 8\times Degen.]$ $\tilde{q} = [1\times, 8\times Degen.]$	0.43	0.9 0.71	1.55	$m(\tilde{x}_{1}^{0}) < 100 \text{ GeV}$ $m(\tilde{q}) \cdot m(\tilde{x}_{1}^{0}) = 5 \text{ GeV}$	1712.02332 1711.03301
arche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$	0	2-6 jets	Yes	36.1	ğ ğ		Forbidden	2.0 0.95-1.6	m(₹10)<200 GeV m(₹10)=900 GeV	1712.02332 1712.02332
'e Se	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q}(\ell \ell) \tilde{\chi}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	Yes	36.1 36.1	ĝ ĝ			1.85 1.2	$m(\tilde{\chi}_{1}^{0}) < 800 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0}) = 50 \text{ GeV}$	1706.03731 1805.11381
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	0 3 e, µ	7-11 jets 4 jets	Yes -	36.1 36.1	Ê Ê		0.98	1.8	m(\vec{k}_1^0) <400 GeV m(\vec{g})-m(\vec{k}_1^0)=200 GeV	1708.02794 1706.03731
ц.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 e,μ 3 e,μ	З <i>b</i> 4 jets	Yes	36.1 36.1	ğ ğ			2.0 1.25	m(t̃ ⁰ ₁)<200 GeV m(ĝ)-m(t̃ ⁰ ₁)=300 GeV	1711.01901 1706.03731
	$\tilde{b}_1\tilde{b}_1,\tilde{b}_1{\rightarrow}b\tilde{\chi}_1^0/t\tilde{\chi}_1^\pm$		Multiple Multiple Multiple		36.1 36.1 36.1		Forbidden Forbidden	0.9 0.58-0.82 0.7	m(\tilde{t}_1^0	$\begin{array}{c} m(\tilde{\chi}^0_1){=}300~{\rm GeV},~{\rm BR}(b\tilde{\chi}^0_1){=}1\\ m(\tilde{\chi}^0_1){=}300~{\rm GeV},~{\rm BR}(b\tilde{\chi}^0_1){=}{\rm BR}(\tilde{\chi}^\pm_1){=}0.5\\ {=}200~{\rm GeV},~m(\tilde{\chi}^\pm_1){=}300~{\rm GeV},~{\rm BR}(\tilde{\chi}^\pm_1){=}1 \end{array}$	1708.09266, 1711.03301 1708.09266 1706.03731
urks tion	$\tilde{b}_1\tilde{b}_1,\tilde{t}_1\tilde{t}_1,M_2=2\times M_1$		Multiple Multiple		36.1 36.1	τ̃ ₁ τ̃ ₁ Forbidden		0.7		$m(\tilde{\chi}_{1}^{0})=60 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	1709.04183, 1711.11520, 1708.03247 1709.04183, 1711.11520, 1708.03247
en. sque t produc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0 \text{ or } t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{H} \text{ LSP}$	0-2 e, µ	0-2 jets/1-2 Multiple Multiple	b Yes	36.1 36.1 36.1	i i i i Forbidden		1.0 0.4-0.9 0.6-0.8	m(i ^c) m(i ^c)	$m(\tilde{\chi}_1^0)=1 \text{ GeV}$ $)=150 \text{ GeV}, m(\tilde{\chi}_1^1)\cdot m(\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{r}_1 \approx \tilde{r}_L$ $)=300 \text{ GeV}, m(\tilde{\chi}_1^1)\cdot m(\tilde{\chi}_1^0)=5 \text{ GeV}, \tilde{r}_1 \approx \tilde{r}_L$	1506.08616, 1709.04183, 1711.11520 1709.04183, 1711.11520 1709.04183, 1711.11520
n ^l ge lirect	$\tilde{t}_1 \tilde{t}_1$, Well-Tempered LSP		Multiple		36.1	ĩ ₁		0.48-0.84	m($\tilde{\chi}_1^{\ell}$)=150 GeV, $m(\tilde{\chi}_1^{\pm}) \cdot m(\tilde{\chi}_1^0)=5$ GeV, $\tilde{t}_1 \approx \tilde{t}_L$	1709.04183, 1711.11520
ωø	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	36.1	\tilde{l}_1	0.46	0.85		m($\tilde{\chi}_1^0$)=0 GeV	1805.01649
		0	mono-jet	Yes	36.1	\tilde{t}_1 \tilde{t}_1	0.46			$m(\tilde{t}_1, \tilde{c}) \cdot m(\tilde{t}_1) = 50 \text{ GeV}$ $m(\tilde{t}_1, \tilde{c}) \cdot m(\tilde{t}_1^0) = 5 \text{ GeV}$	1711.03301
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	1-2 e, µ	4 <i>b</i>	Yes	36.1	ĩ ₂		0.32-0.88		$m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=180$ GeV	1706.03986
	$ ilde{\chi}_1^\pm ilde{\chi}_2^0$ via WZ	2-3 e,μ ee,μμ	- ≥ 1	Yes Yes	36.1 36.1	$ \begin{array}{ccc} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} \end{array} \hspace{0.5cm} \textbf{0.17} \end{array} $		0.6		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})-m(\tilde{\chi}_{1}^{0})=10 \text{ GeV}$	1403.5294, 1806.02293 1712.08119
of <	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu})$	<i>ℓℓ/ℓγγ/ℓbb</i> 2 τ	-	Yes Yes	20.3 36.1	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}$ 0.26 $\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0}$		0.76		$m(\tilde{\chi}_{1}^{0})=0$ $m(\tilde{\chi}_{1}^{0})=0, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1501.07110 1708.07875
dire	$\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell}{\rightarrow}\ell\tilde{\chi}^0_1$	2 e, µ	0	Yes	36.1	X ₁ ⁻ /X ₂ ⁻ 0.22	0.5		m(¥1)-m($\chi_1^{(r)} = 100 \text{ GeV}, m(\bar{\tau}, \bar{\nu}) = 0.5(m(\chi_1^{(r)}) + m(\chi_1^{(r)}))$ $m(\tilde{\chi}_1^{(0)}) = 0$	1708.07875 1803.02762
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 4 e,µ	$\geq 3b$ 0	Yes Yes	36.1 36.1	й 0.13-0.23 Й 0.3-0.23		0.29-0.88		$BR(\tilde{\chi}_1^0 \rightarrow h\tilde{G})=1$ $BR(\tilde{\chi}_1^0 \rightarrow Z\tilde{G})=1$	1806.04030 1804.03602
σ	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	36.1	\tilde{X}_{1}^{\pm} \tilde{X}_{2}^{\pm} 0.15	0.46			Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
-live cles	Stable g R-hadron	SMP	-	-	3.2	ĝ			1.6		1606.05129
arti	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$		Multiple		32.8	$\tilde{g} = [\tau(\tilde{g}) = 100 \text{ ns}, 0.2 \text{ ns}]$			1.6	2.4 $m(\tilde{\chi}_1^0)=100 \text{ GeV}$	1710.04901, 1604.04520
ЪД	GMSB, $\tilde{\chi}_{1}^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_{1}^{0}$	2γ displee/eu/u	-	Yes	20.3	X ₁ ⁰	0.44		12	$1 < \tau(\tilde{\chi}_1^0) < 3 \text{ ns, SPS8 model}$	1409.5542
	$gg, x_1 \rightarrow eev/e\mu v/\mu\mu v$	au et ut	<i></i>		20.3	8			1.3	o <cr(t₁)< 1000="" lev<="" m(t₁)="1" mm,="" td=""><td>1004.00162</td></cr(t₁)<>	1004.00162
	$\psi p p \rightarrow v_{\tau} + \Lambda, v_{\tau} \rightarrow e \mu / e \tau / \mu \tau$ $\tilde{v}_{\tau}^{\pm} \tilde{v}_{\tau}^{\mp} / \tilde{v}_{\tau}^{0} \rightarrow W W / T \ell \ell \ell h m$	eμ,eι,μτ 4 e. μ	-	Yes	3.2	$\tilde{Y}_{\tau}^{\pm} / \tilde{X}_{\tau}^{0} = [d_{\tau \tau} \neq 0, d_{\tau \tau} \neq 0]$		0.82	1.33	$\pi_{311}=0.11, \pi_{132/133/233}=0.07$ $m(\tilde{\chi}^0)=100 \text{ GeV}$	1804.03602
>	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	0 4	-5 large-R je Multiple	ets -	36.1 36.1	$\tilde{g} = [m(\tilde{X}_1^0) = 200 \text{ GeV}, 1100 \text{ GeV}]$ $\tilde{g} = [\tilde{A}_{113}^0 = 2e\cdot4, 2e\cdot5]$		1.0	1.3 1.9 5 2.0	$m(\tilde{x}_1^0)=200 \text{ GeV binn-like}$	1804.03568 ATLAS-CONF-2018-003
ЯP	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tbs / \tilde{g} \rightarrow tt\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$		Multiple		36.1	ğ [λ ^{''} ₃₂₃ =1, 1e-2]			1.8 2.1	m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow t b s$		Multiple		36.1		0.5	55 1.0	5	$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow bs$	0	2 jets + 2 l	b -	36.7	$\tilde{l}_1 = [qq, bs]$	0.42	0.61		BB (2) (()	1710.07171
	$t_1t_1, t_1 \rightarrow bt$	2 e,µ	2 b	-	36.1	<i>t</i> ₁			0.4-1.45	$BR(i_1 \rightarrow be/b\mu) > 20\%$	1710.05544
						I					
*Onlv	a selection of the available m	ass limits on	new state	es or	1	0 ⁻¹			1	Mass scale (TeV)	
		line ite and ha				-			-	wass scale [187]	

tes or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Backup: ATLAS summary plots for slepton vs boson mediated decays

Backup: ATLAS summary plot for direct slepton production

Backup: ATLAS summary plot for higgsinos

Backup: RJR analysis decay trees

Backup: RJR SR/CR/VRs for 2I+jets 'standard' decay tree

Region	$n_{ m leptons}$	$n_{ m jets}$	$n_{b-\mathrm{tag}}$	$p_{\mathrm{T}}^{\ell_1,\ell_2}$ [GeV]	$p_{\mathrm{T}}^{j_1,j_2}$ [GeV]	$m_{\ell\ell} [{\rm GeV}]$	m_{jj} [GeV	M] m_{T}^{W} [GeV]
CR2ℓ-VV	$\in [3,4]$	≥ 2	=0	> 25	> 30	$\in (80, 100)$	> 2	$e^{0} \in (70, 100)$
								if $n_{\text{leptons}} = 3$
$CR2\ell$ -Top	= 2	≥ 2	=1	> 25	> 30	$\in (80, 100)$	$\in (40, 250)$) –
VR2ℓ-VV	= 2	≥ 2	=0	> 25	> 30	$\in (80, 100)$	$\in (40, 70)$)) –
							or $\in (90, 500)$)) –
$VR2\ell$ -Top	= 2	≥ 2	=1	> 25	> 30	$\in (20, 80)$	$\in (40, 250)$)) –
						or > 100		-
$\mathrm{VR}2\ell_{-}\mathrm{High}{-}\mathrm{Zjets}$	= 2	≥ 2	= 0	> 25	> 30	$\in (80, 100)$	$\in (0, 60)$)) –
							or $\in (100, 180)$)) –
$VR2\ell_Low-Zjets$	= 2	= 2	= 0	> 25	> 30	$\in (80, 100)$	$\in (0, 60)$)) –
							or $\in (100, 180)$)) –
SB2/ High	= 2	> 2	= 0	> 25	> 30	$\in (80, 100)$	$\in (60, 100)$)) –
$SR2\ell_Int$	$= \frac{1}{2}$	$\geq \frac{1}{2}$	= 0	> 25	> 30	$\in (80, 100)$	$\in (60, 100)$)) –
SR2ℓ_Low	= 2	= 2	= 0	> 25	> 30	$\in (80, 100)$	$\in (70, 90)$)) –
		_		,	р Р,	<pre>< (,)</pre>	- (- ,	- /
Region	$H_{\rm eff}^{\rm PP}$ [GeV]	H_{1}^{PP} [(GeVl -	$p_{\rm T\ PP}^{\rm lab}$	$\min(H_{1,1}^{\Gamma_a}, H_{1,1}^{\Gamma_b})$	$\frac{H_{1,1}^{\text{PP}}}{H_{1,1}}$	$\Delta \phi_{-}^{P}$ r	$\min \Delta \phi(i_1/i_2, \vec{n}_{-}^{\text{miss}})$
region	114,1 [007]	11,1 [$^{\mathrm{lab}}_{\mathrm{T}\ \mathrm{PP}} + {}^{H}^{\mathrm{PP}}_{\mathrm{T}\ 4,1}$	$\min(H_{2,1}^{\operatorname{Pa}}, H_{2,1}^{\operatorname{Pb}})$	$H_{4,1}^{\mathrm{PP}}$	$= \varphi_V$	$\varphi(J_1/J_2, P_1)$
CR2ℓ-VV	> 200		_	< 0.05	> 0.2	_	$\in (0.3, 2.8)$	_
$CR2\ell$ -Top	> 400		_	< 0.05	> 0.5	_	$\in (0.3, 2.8)$	_
$VR2\ell$ -VV	> 400	>	250	< 0.05	$\in (0.4, 0.8)$	_	$\in (0.3, 2.8)$	_
$VR2\ell$ -Top	> 400		_	< 0.05	> 0.5	_	$\in (0.3, 2.8)$	_
$\mathrm{VR}2\ell_{-}\mathrm{High}{-}\mathrm{Zjets}$	> 600		—	< 0.05	> 0.4	_	$\in (0.3, 2.8)$	_
VR2ℓ_Low-Zjets	> 400		_	< 0.05	_	$\in (0.35, 0.60)$	_	
SR2ℓ_High	> 800		_	< 0.05	> 0.8	_	$\in (0.3, 2.8)$	-
SR2ℓ_Int	> 600		-	< 0.05	> 0.8		$\in (0.6, 2.6)$	-
SR2ℓ_Low	> 400		_	< 0.05	-	$\in (0.35, 0.60)$	—	> 2.4

=> SRs use RJR variables relating to energy/mass scale, angular variables and object momenta in several rest frames.

Backup: RJR analysis SR distributions for 3I channel

 $H_{3,1}^{PP}$ =sum of the magnitudes of the visible and invisible momenta in the rest frame of the pair produced system-> scale variable that behaves like m_{eff}

 $p_{T ISR}^{CM}$ = transverse momentum of the ISR system in the centre of mass frame.

 $\frac{\min(H_{1,1}^{P_a}, H_{1,1}^{P_b})}{\min(H_{2,1}^{P_a}, H_{2,1}^{P_b})} \stackrel{=>\text{Compares scale due to one}}{\stackrel{object}{=} E_T^{miss} \text{ in respective}} \\ \text{production frames to two. Good} \\ \text{discrimination against Z+jets} \end{cases}$

Backup: 2I+ \vec{p}_T^{miss} analysis background estimation

Backup: 2I+ \vec{p}_T^{miss} analysis background estimation

Region	VR-WW-0J	VR-WW-1J	VR-VZ	VR-top-low	VR-top-high
Lepton flavour	DF	DF	\mathbf{SF}	DF	DF
$n_{b\text{-tagged jets}}$	= 0	= 0	= 0	=1	= 1
$n_{\text{non-}b\text{-}\mathrm{tagged jets}}$	= 0	=1	= 0	= 0	= 1
m_{T2} [GeV]	$\in [65, 100]$	\in [65,100]	\in [100,120]	\in [80,100]	> 100
$E_{\rm T}^{\rm miss}$ [GeV]	> 60	> 60	> 110	> 110	> 110
$E_{\rm T}^{\rm miss}$ significance	> 5	> 5	> 10	> 5	> 5
$ m_{\ell\ell} - m_Z $ [GeV]	_	_	< 30	_	_

- VRs defined for all dominant background processes, with additional VR-toplow at low m_{T2} to ensure contamination in the WW CRs/VRs is wellmodelled.
- To validate modelling of WW background at high m_{T2} , used a 3I WZ selection with $E_T^{miss} = [40,120]$ GeV and examined the m_{T2} distribution when one of the leptons is added to the \vec{p}_T^{miss} vector to mimic a neutrino.

Backup: Zh-> neutralinos search analysis regions

Cut	CR WZ	$CR Z\gamma$	VR Z γ	VR jets	SR
Pass triggers and vetos	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2 signal leptons	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
At least 1 signal photon	> 25 GeV(electron)	> 25 GeV	> 25 GeV	> 25 GeV	> 25 GeV
$m_{\ell\ell}^{ m win}$	81-101 GeV	81-101 GeV	81-101 GeV	85-120 GeV	81-101 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 95 GeV	20-35 GeV	35-70 GeV	> 35 GeV	> 95 GeV
$\operatorname{Bal}_{p_{\mathrm{T}}}$	< 0.2	< 0.2	< 0.2	-	< 0.2
$\Delta \phi_{\ell\ell,\gamma E_{ ext{T}}^{ ext{miss}}}$	> 2.8	-	-	< 2.2	> 2.8
$\Delta \phi(\ell,\ell)$	< 1.4	< 2.0	< 2.0	-	< 1.4

Final results in SR: 2.1 \pm 0.5 expected vs 3 observed

Backup: Zh-> neutralinos search

Background from jets faking photons:

•Apply photon "fake-factor" to events containing "pseudo-photons" (satisfying a loose criteria but failing the tight criteria required by the analysis).

•Reduce statistical uncertainty by removing isolation requirement on pseudo-photons and applying an additional factor (0.17) to account for the difference.

Results for $h \rightarrow \gamma \gamma + E_T^{miss}$ region:

Over all BR ranges from 5-18% depending on LSP and NLSP masses!

Backup: Compressed EW searches

<u> Phys. Rev. D 97 (2018) 052010</u>

Improved performance for low p_T lepton reconstruction and shape fits

 Select 2 soft leptons recoiling against ISR jet and exploit kinematic endpoint of signal distributions (m_{ll} for χ̃⁰₂χ̃[±]₁ and m_{T2} for slepton pair production).

Backup: Statistical analysis in SUSY searches

For most SUSY searches construct likelihood for hypothesis testing based on data and predicted SM background in all SRs/CRs:

Backup: Statistical analysis in SUSY searches

Perform three different simultaneous fits using this likelihood function

- **1.** Background-only fit: set μ_s =0 and fit nuisance parameters to the observed data in the control regions.
- **2.** Exclusion fit: simultaneous fit to data in all SRs and CRs, including signal contribution. Perform hypothesis test and reject μ_s =1 hypothesis if "*CL_s*" value (approximate p-value) <0.05.
- 3. Discovery fit: inject signal contribution into SR only (no contribution in CRs). Calculate upper limit on signal contribution in SR, and p-value for background-only hypothesis.

=> All of this is handled effectively using the **HistFitter** package (<u>arXiv:1410.1280</u>)

