Polarization observables in WZ production at the LHC in the Standard Model

Julien BAGLIO¹, LE Duc Ninh²

University of Tübingen, Tübingen, Germany ² Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Ouv Nhon, Vietnam

Windows on the universe, Quy Nhon, 7 August 2018

Outline

- Motivation
- Link between polarization observables (angular coefficients) and spin-density matrix
- ► Reference frames: Collins-Soper and Helicity frames
- How do we (theorists) calculate?
- Results (ATLAS, CMS)
- Summary

Motivation

- The process $pp \rightarrow WZ \rightarrow 3l + v$ is important in the physics program at the LHC.
- Sensitive to triple-gauge couplings
- Background to other processes, new physics searches
- ► High statistics ~> precision!
- To search for hints of new physics: polarization observables can be important
- To find new physics effects: good understanding of theoretical and experimental errors is needed

$W^{\pm}Z$ production at the LHC

- Intial beams: unpolarized
- Only left-handed quarks interact with W (max. asymmetry)
- Z interacts with both left- and right-handed quarks, but with different coupling strength:

$$g_R^t = -(s_W Q_f)/c_W,$$

- $g_L^f = (I_f^3 s_W^2 Q_f) / (s_W c_W).$
- ► ~→ W and Z produced at the LHC are polarized!

Remark: those polarized W and Z induce an asymmetry in angular distributions of the final-state leptons!

Polarization fractions

Notation: e = 3, $\mu^- = 6$, $\theta_i = \angle(\vec{p}'_i, \vec{z}')$ in the *V* rest frame

$$\frac{d\sigma}{\sigma d \cos \theta_3} \equiv \frac{3}{8} \Big[(1 - \cos \theta_3)^2 f_L^{W^+} + (1 + \cos \theta_3)^2 f_R^{W^+} + 2\sin^2 \theta_3 f_0^{W^+} \Big], \qquad (1)$$

$$\frac{d\sigma}{\sigma d \cos \theta_6} \equiv \frac{3}{8} \Big[(1 + \cos^2 \theta_6 + 2c \cos \theta_6)^2 f_L^Z + (1 + \cos^2 \theta_6 - 2c \cos \theta_6)^2 f_R^Z + 2\sin^2 \theta_6 f_0^Z \Big], \qquad (2)$$

$$q^2 - q^2 = 1 - 4s^2$$

$$c = \frac{g_L - g_R}{g_L^2 + g_R^2} = \frac{1 - 4s_W}{1 - 4s_W^2 + 8s_W^4} \approx 21\% \text{ for charged leptons.}$$
(3)

Note: $f_L + f_R + f_0 = 1$

- If $f_L = f_R$, the distributions are symmetric in $\cos \theta$.
- ► For polarized gauge bosons: $f_L \neq f_R \rightarrow$ asymmetry in $\cos \theta$ distributions.
- ► Values of f_L , f_R , f_0 depend on reference frame and coordinate system.

However, there is more information about polarization.

Spin density matrix (I)

A massive gauge boson (spin = 1) has 3 polarization states!

$$\rho \equiv |\psi\rangle \langle \psi|, \tag{4}$$

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \operatorname{Tr}(A\rho),$$
 (5)

$$|\psi\rangle = \sum_{\substack{\lambda=1\\3}}^{3} c_{\lambda} |\lambda\rangle, \tag{6}$$

$$\rho = \sum_{\lambda,\lambda'=1} \underbrace{c_{\lambda}c_{\lambda'}^{*}}_{\rho_{\lambda\lambda'}} |\lambda\rangle \langle \lambda'|$$
(7)

- ρ is Hermitian: $\rho_{\lambda\lambda'}^* = \rho_{\lambda'\lambda}$
- Normalization $Tr(\rho) = 1$
- ρ is positive semidefinite

Thus, ρ is described by 8 real parameters!

Spin density matrix (II)

[Ref. Aguilar-Saavedra, Bernabeu, arXiv:1508.04592, PRD2016]

$$\rho = \frac{1}{3}\mathbb{1} + \frac{1}{2}\sum_{M=-1}^{1} \langle S_{M} \rangle^{*} S_{M} + \sum_{M=-2}^{2} \langle T_{M} \rangle^{*} T_{M}, \qquad (8)$$
$$S_{\pm 1} = \mp \frac{1}{\sqrt{2}}(S_{1} \pm iS_{2}), S_{0} = S_{3}, S_{i} \text{ spin operators}, \qquad (9)$$

$$T_{\pm 2} = S_{\pm 1}^2, \ T_{\pm 1} = \frac{1}{\sqrt{2}} (S_{\pm 1} S_0 + S_0 S_{\pm 1}), \tag{10}$$

$$T_0 = \frac{1}{\sqrt{6}}(S_{+1}S_{-1} + S_{-1}S_{+1} + 2S_0^2)$$
, rank 2 irreducible tensors

$$\rho_{\pm 1\pm 1} = \frac{1}{3} \pm \frac{1}{2} < S_3 > + \frac{1}{\sqrt{6}} < T_0 >, \ \rho_{00} = \frac{1}{3} - \frac{2}{\sqrt{6}} < T_0 >,$$

$$\rho_{\pm 10} = \frac{1}{2\sqrt{2}} (< S_1 > \mp i < S_2 >) \mp \frac{1}{\sqrt{2}} (< A_1 > \mp i < A_2 >),$$

$$\rho_{1-1} = < B_1 > -i < B_2 >,$$
(11)

$$A_1 = \frac{1}{2}(T_1 - T_{-1}), \ A_2 = \frac{1}{2i}(T_1 + T_{-1}), \ B_1 = \frac{1}{2}(T_2 + T_{-2}), \ B_2 = \frac{1}{2i}(T_2 - T_{-2})$$

Complete spin information: 3 vector and 5 tensor modes!

Le Duc Ninh (IFIRSE, Quy Nhon)

Spin (or polarization) observables: W

[Ref. Gounaris et al IJMPA1993; Aguilar-Saavedra, Bernabeu, arXiv:1508.04592, PRD2016] Consider the case of $W^*(m) \rightarrow I(\lambda_1)\nu_I(\lambda_2)$ decay:

$$\begin{split} |\mathcal{M}|^2 &= \sum_{m,m'} \rho_{mm'} \mathcal{M}_{m\lambda_1\lambda_2} \mathcal{M}^*_{m'\lambda_1\lambda_2}, \\ &= \sum_{m,m'} \rho_{mm'} |a_{\lambda_1\lambda_2}|^2 e^{i(m-m')\phi} d^1_{m\lambda}(\theta) d^1_{m'\lambda}(\theta), \\ \mathcal{M}_{m\lambda_1\lambda_2} &= a_{\lambda_1\lambda_2} e^{im\phi} d^1_{m\lambda}(\theta), \ \lambda(W^{\pm}) &= \lambda_1 - \lambda_2 = \pm 1, \\ d^1_{11}(\theta) &= \frac{1+\cos\theta}{2}, \ d^1_{1-1}(\theta) = \frac{1-\cos\theta}{2}, \\ d^1_{01}(\theta) &= \frac{\sin\theta}{\sqrt{2}}, \ d^j_{m'm} = (-1)^{m-m'} d^j_{mm'} = d^j_{-m-m'}, \end{split}$$

 θ and ϕ are the polar and azimuthal angles of \vec{p}_e in the W boson rest frame.

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta d\phi} = \frac{3}{8\pi} \left[\frac{1}{2} (1 + \cos^2 \theta) + \langle S_3 \rangle \cos \theta + (\frac{1}{6} - \frac{1}{\sqrt{6}} \langle T_0 \rangle) (1 - 3\cos^2 \theta) \right]$$
$$+ \langle S_1 \rangle \cos \phi \sin \theta + \langle S_2 \rangle \sin \phi \sin \theta - \langle A_1 \rangle \cos \phi \sin 2\theta$$
$$- \langle A_2 \rangle \sin \phi \sin 2\theta + \langle B_1 \rangle \cos 2\phi \sin^2 \theta + \langle B_2 \rangle \sin 2\phi \sin^2 \theta \right]$$

This angular distribution contains all W spin information: 8 (pseudo-)observables!

Le Duc Ninh (IFIRSE, Quy Nhon)

Spin (or polarization) observables: Z

[Ref.1: Aguilar-Saavedra et al, arXiv:1701.03115, EPJC2017] Similarly, for the case of $Z^*(m) \rightarrow l^-(\lambda_1)l^+(\lambda_2)$ decay:

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta d\phi} = \frac{3}{8\pi} \Big[\frac{1}{2} (1+\cos^2\theta) - c < S_3 > \cos\theta + (\frac{1}{6} - \frac{1}{\sqrt{6}} < T_0 >)(1-3\cos^2\theta) \\ - c < S_1 > \cos\phi\sin\theta - c < S_2 > \sin\phi\sin\theta - < A_1 > \cos\phi\sin2\theta \\ - < A_2 > \sin\phi\sin2\theta + < B_1 > \cos2\phi\sin^2\theta + < B_2 > \sin2\phi\sin^2\theta \Big]$$

- The above simple relations between the coefficients of the θ - ϕ distribution and the elements of the spin density matrix were proven at leading order.
- In full calculation, there are also other contributions (e.g. γ^{*} → l⁻l⁺), interference and radiation effects. The above simple relations hence cannot be true, because they include only the spin information of W or Z.
- However, the form of the θ - ϕ distribution with 8 coefficients is general, same for *W* and for *Z*, and will be used for theoretical and experimental calculations.
- Integrating over θ or φ, the coefficients < S_i >, < A_i >, ... can be related to 8 angular asymmetries [Ref.1].

Double Pole Approximation (DPA)

At LO, the amplitude in the DPA is defined as

$$\begin{split} \mathcal{A}_{\mathrm{LO,DPA}}^{ab \rightarrow V_1 V_2 \rightarrow 4/} &= \sum_{\lambda_1, \lambda_2} \frac{\mathcal{A}_{\mathrm{LO}}^{ab \rightarrow V_1 V_2} \mathcal{A}_{\mathrm{LO}}^{V_1 \rightarrow 1/2} \mathcal{A}_{\mathrm{LO}}^{V_2 \rightarrow 1/3/4}}{Q_1 Q_2}, \\ Q_i &= q_i^2 - M_{V_i}^2 + i M_{V_i} \Gamma_{V_i}, \quad i = 1, 2. \end{split}$$

Spin-density matrix in DPA, V = W, Z:

$$\rho_{\lambda\lambda'}^{V} = C \sum_{s_q,s_l} \mathcal{A}_{qq' \to |l'V}^{*}(\lambda, s_q, s_l) \mathcal{A}_{qq' \to |l'V}(\lambda', s_q, s_l).$$

- Note: this definition is based on on-shell V production and is independent of V decay.
- In this work, NLOEW corrections are always calculated in DPA. LO and NLOQCD are full calculations.
- FULL NLOEW = FULL LO + NLOEW
- DPA NLOEW = DPA LO + NLOEW.

Polarization observables in two frames

Convention: used by ATLAS and CMS, $I = \mu^{-}$ for Z, in the V rest frame,

$$\frac{d\sigma}{\sigma d \cos \theta d\phi} = \frac{3}{16\pi} \Big[(1 + \cos^2 \theta) + A_0 \frac{1}{2} (1 - 3\cos^2 \theta) + A_1 \sin(2\theta) \cos \phi \\ + A_2 \frac{1}{2} \sin^2 \theta \cos(2\phi) + A_3 \sin \theta \cos \phi + A_4 \cos \theta \\ + A_5 \sin^2 \theta \sin(2\phi) + A_6 \sin(2\theta) \sin \phi + A_7 \sin \theta \sin \phi \Big],$$

$$P_1' \qquad \qquad P_1' \qquad \qquad P_1$$

- ► Collins-Soper frame [CS, 1977]: z' is the bisector of \vec{P}'_1 and $-\vec{P}'_2$, points into the hemisphere of \vec{p}_V (in the lab frame).
- Helicity frame [Bern et al, arXiv:1103.5445]: $z' = \vec{p}_V$.
- Integrating over ϕ gives the above polarization fractions $f_{L,0,R}$.

Le Duc Ninh (IFIRSE, Quy Nhon)

Calculations

Expectation of an observable $f(\theta, \phi)$:

<

$$< f(\theta) > = \int_{-1}^{1} d\cos\theta f(\theta) \frac{1}{\sigma} \frac{d\sigma}{d\cos\theta},$$

$$f(\theta, \phi) > = \int_{-1}^{1} d\cos\theta \int_{0}^{2\pi} d\phi f(\theta, \phi) \frac{1}{\sigma} \frac{d\sigma}{d\cos\theta d\phi},$$

$$f_{L}^{W^{\pm}} = -\frac{1}{2} \mp < \cos\theta_{3} > +\frac{5}{2} < \cos^{2}\theta_{3} >,$$

$$f_{R}^{W^{\pm}} = -\frac{1}{2} \pm < \cos\theta_{3} > +\frac{5}{2} < \cos^{2}\theta_{3} >,$$

$$f_{R}^{W^{\pm}} = 2 - 5 < \cos^{2}\theta_{3} >,$$

$$f_{L}^{Z} = -\frac{1}{2} + \frac{1}{c} < \cos\theta_{6} > +\frac{5}{2} < \cos^{2}\theta_{6} >,$$

$$f_{R}^{Z} = -\frac{1}{2} - \frac{1}{c} < \cos\theta_{6} > +\frac{5}{2} < \cos^{2}\theta_{6} >,$$

$$f_{0}^{Z} = 2 - 5 < \cos^{2}\theta_{6} >,$$

$$f_{0}^{Z} = 2 - 5 < \cos^{2}\theta_{6} >,$$

$$f_{0}^{Z} = 2 - 5 < \cos^{2}\theta_{6} >,$$

$$A_{0} = 4 - 10 < \cos^{2}\theta >, A_{1} = < 5 \sin 2\theta \cos\phi >,$$

For distributions independent of $p_i: \sigma \to d\sigma/dp_T^V$. Using bin-averaged method.

Le Duc Ninh (IFIRSE, Quy Nhon)

. . .

Useful relations

Relations between the polarization fractions and angular coefficients:

$$\begin{split} f_L^{W^{\pm}} &= \frac{1}{4}(2-A_0^{W^{\pm}} \mp A_4^{W^{\pm}}), \ f_R^{W^{\pm}} &= \frac{1}{4}(2-A_0^{W^{\pm}} \pm A_4^{W^{\pm}}), \ f_0^{W^{\pm}} &= \frac{1}{2}A_0^{W^{\pm}}, \\ f_L^Z &= \frac{1}{4}(2-A_0^Z + \frac{1}{c}A_4^Z), \ f_R^Z &= \frac{1}{4}(2-A_0^Z - \frac{1}{c}A_4^Z), \ f_0^Z &= \frac{1}{2}A_0^Z. \end{split}$$

1/c ≈ 5.

Polarization fractions W^+ and Z: best results

Method	$f_L^{W^+}$	$f_0^{W^+}$	$f_R^{W^+}$	f_L^Z	f_0^Z	f_R^Z
HE FULL-LO	$0.355(2)^{+2}_{-2}$	$0.513(1)^{+3}_{-3}$	$0.132(2)^{+0.8}_{-0.7}$	$0.222(2)^{+0.8}_{-0.2}$	0.517(2) ⁺¹ _{-0.9}	0.261(3) ⁺¹ ₋₂
HE FULL-NLOQCD	0.320(3)^{+2}_{-3}	$0.508(3)^{+2}_{-2}$	0.172(2) ⁺⁴ ₋₃	0.255(8) ⁺⁵ ₋₁	0.493(2) ⁺² ₋₃	0.252(8)^{+0}_{-3}
HE FULL-NLOEW	0.355	0.512	0.133	0.217	0.518	0.266
CS FULL-LO	0.304(3)^{+2}_{-2}	0.699(2)^{+2}_{-2}	$-0.003(1)^{+0.2}_{-0.08}$	0.227(3)^{+0}_{-0.6}	0.627(1) ⁺¹ _{-0.8}	0.145(3) ⁺¹ _{-0.8}
CS FULL-NLOQCD	0.239(3)_5^+4	$0.756(2)^{+4}_{-4}$	0.004(2) ⁺¹ _{-0.3}	0.211(5)_3^{+0.1}	0.634(2) ⁺² ₋₃	0.156(7)_2+3
CS FULL-NLOEW	0.304	0.698	-0.0023[2]	0.212	0.629	0.158

- NLOQCD from VBFNLO program, NLOEW in DPA our own code.
- Statistical errors (shown in [] where significant) about 10 times smaller than PDF errors.
- Scale errors are shown for LO and NLOQCD results.
- Central scale $\mu_R = \mu_F = (M_W + M_Z)/2$.
- We use LUXqed17_plus_PDF4LHC15_nnlo_30.
- Polarization fraction can get negative!

Off-shell, NLOEW correction effects

13 TeV, ATLAS fiducial:

Method	$f_L^{W^+}$	$f_0^{W^+}$	$f_R^{W^+}$	f_L^Z	f_0^Z	f_R^Z
HE FULL-LO	$0.355(2)^{+2}_{-2}$	$0.513(1)^{+3}_{-3}$	$0.132(2)^{+0.8}_{-0.7}$	$0.222(2)^{+0.8}_{-0.2}$	0.517(2) ⁺¹ _{-0.9}	0.261(3) ⁺¹ ₋₂
HE DPA-LO	0.355	0.512	0.133	0.263	0.498	0.239
HE DPA-NLOEW-prodV	0.356	0.510	0.134	0.262	0.499	0.240
HE DPA-NLOEW-decayV	0.355	0.512	0.133	0.259	0.498	0.243
HE DPA-NLOEW	0.355	0.510	0.135	0.258	0.499	0.244
CS FULL-LO	0.304(3)^{+2}_{-2}	0.699(2)^{+2}_{-2}	$-0.003(1)^{+0.2}_{-0.08}$	0.227(3)^{+0}_{-0.6}	0.627(1) ⁺¹ _{-0.8}	0.145(3)^{+1}_{-0.8}
CS DPA-LO	0.271	0.729	-0.0005[3]	0.242	0.600	0.158
CS DPA-NLOEW-prodV	0.271	0.729	-0.0002[3]	0.240	0.603	0.157
CS DPA-NLOEW-decayV	0.271	0.730	-0.0007[3]	0.228	0.600	0.172
CS DPA-NLOEW	0.271	0.729	-0.0004[3]	0.226	0.603	0.171

▶ Watch: Full vs. DPA, corrections to production and decays.

W^+ angular coefficients: best results

13 TeV, ATLAS fiducial:

Method	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
HE FULL-LO	1.026(3)^{+5}_{-6}	-0.286(3) ⁺⁴ ₋₃	$-1.314(4)^{+2}_{-4}$	-0.251(3) ⁺³ ₋₂	$-0.446(7)^{+3}_{-3}$	$-0.003(2)^{+0.3}_{-0.2}$	-0.001(2) ^{+0.03} _{-0.01}	-0.004(2) ^{+0.2}
HE FULL-NLOQCD	1.016(6)^{+4}_{-3}	$-0.325(4)^{+3}_{-2}$	$-1.414(8)^{+12}_{-11}$	-0.230(7) ⁺³ _{-0.4}	$-0.296(9)^{+13}_{-9}$	$-0.001(4)^{+0.6}_{-0.4}$	0.0004(38)^{+15}_{-6}	0.005(8)^{+0.1}_{-2}
HE FULL-NLOEW	1.023	-0.285	-1.317	-0.252	-0.444	-0.0038[3]	-0.0037[4]	0.0028[3]
CS FULL-LO	1.397(3)^{+4}_{-5}	0.230(3)^{+3}_{-3}	-0.944(6) ^{+0.8}	0.003(3)_0.1	$-0.613(8)^{+4}_{-4}$	$-0.0005(20)^{+1}_{-1}$	0.003(2)_{-0.2}^{+0.1}	0.004(2)_{-0.3}^{+0}
CS FULL-NLOQCD	$1.512(5)^{+8}_{-7}$	$0.192(5)^{+1}_{-3}$	$-0.92(1)^{+0.3}_{-0.4}$	0.061(6)^{+4}_{-4}	$-0.470(9)^{12}_{-8}$	-0.0006(41) ⁺⁵ ₋₁₁	0.001(5)_1+0	$-0.01(1)^{+0.2}_{-0}$
CS FULL-NLOEW	1.397	0.228	-0.945	0.0052[3]	-0.612	0.0007[4]	0.0056[4]	-0.0028[3]

► A₅, A₆, A₇ are very small, but statistically not zero!

W^+ off-shell, NLOEW correction effects on A_i

13 TeV, ATLAS fiducial:

Method	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
HE FULL-LO	1.026(3)^{+5}_{-6}	-0.286(3) ⁺⁴ ₋₃	$-1.314(4)^{+2}_{-4}$	$-0.251(3)^{+3}_{-2}$	$-0.446(7)^{+3}_{-3}$	$-0.003(2)^{+0.3}_{-0.2}$	-0.001(2) ^{+0.03} _{-0.01}	-0.004(2) ^{+0.2}
HE DPA-LO	1.023	-0.326	-1.404	-0.156	-0.445	-0.0001[3]	0.00001[39]	0.0001[3]
HE DPA-NLOEW-prod W^+	1.020	-0.324	-1.406	-0.156	-0.442	-0.0018[4]	-0.0031[4]	0.0067[3]
HE DPA-NLOEW-decayW+	1.024	-0.326	-1.405	-0.157	-0.443	-0.0001[3]	0.00001[39]	0.0001[3]
HE DPA-NLOEW	1.020	-0.324	-1.407	-0.157	-0.441	-0.0018[4]	-0.0032[4]	0.0067[3]
CS FULL-LO	1.397(3)_5^+4	$0.230(3)^{+3}_{-3}$	-0.944(6)_3^{+0.8}	$0.003(3)^{+0.1}_{-0.1}$	-0.613(8) ⁺⁴ ₋₄	-0.0005(20) ⁺¹ ₋₁	0.003(2)_{-0.2}^{+0.1}	0.004(2)^{+0}_{-0.3}
CS DPA-LO	1.459	0.299	-0.971	-0.073	-0.544	-0.00001[38]	0.00003[38]	-0.0001[3]
CS DPA-NLOEW-prod W^+	1.458	0.297	-0.971	-0.072	-0.543	0.0010[4]	0.0036[4]	-0.0067[3]
CS DPA-NLOEW-decayW ⁺	1.459	0.298	-0.971	-0.072	-0.544	-0.00002[38]	0.00003[39]	-0.0001[3]
CS DPA-NLOEW	1.458	0.297	-0.971	-0.070	-0.543	0.0010[4]	0.0037[4]	-0.0067[3]

Z angular coefficients: best results

13 TeV, ATLAS fiducial:

Method	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
HE FULL-LO	1.035(3)^{+3}_{-2}	-0.304(2)^{+0.9}_{-2}	$-0.705(4)^{+0.7}_{-0.2}$	0.063(4)_1+0	-0.017(2) ⁺¹ _{-0.6}	$-0.007(2)^{+0.6}_{-0.3}$	-0.007(3) ⁺⁰ _{-0.6}	0.003(2)_{-0.4}^{+0}
HE FULL-NLOQCD	0.985(4)^{+3}_{-5}	$-0.307(6)^{+5}_{-3}$	$-0.73(2)^{+0}_{-0.8}$	0.031(4) ⁺² ₋₂	0.001(7) ⁺³ _{-0.3}	$-0.005(8)^{+2}_{-0.4}$	-0.003(5) ^{+0.1}	$0.003(5)^{+2}_{-0.9}$
HE FULL-NLOEW	1.035	-0.305	-0.711	0.051	-0.0209[2]	-0.0070[4]	-0.0077[4]	0.0028[3]
CS FULL-LO	1.255(2)^+22	0.240(2)^{+3}_{-2}	-0.488(4) ^{+0.3}	-0.061(3) ⁺¹ ₋₀	0.035(3)_0.1	$-0.001(3)^{+0.3}_{-0}$	0.011(2)_{-0.2}^{+0.7}	-0.003(2)_0+0.3
CS FULL-NLOQCD	1.267(5)_6^+4	0.220(5) ⁺² ₋₁	$-0.45(2)^{0.2}_{-0.6}$	$-0.022(6)^{+4}_{-2}$	0.024(5)_2^{+0.5}	-0.001(7) ⁺² _{-0.01}	0.006(6) ⁺⁰ ₋₁	-0.003(3) ⁺¹ ₋₂
CS FULL-NLOEW	1.259	0.235	-0.490	-0.054	0.0232[3]	0.0007[5]	0.0113[3]	-0.0028[3]

► Again, A₅, A₆, A₇ are very small, but statistically not zero!

Z off-shell, NLOEW correction effects on A_i

13 TeV, ATLAS fiducial:

Method	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
HE FULL-LO	1.035(3)^{+3}_{-2}	-0.304(2)_2+0.9	-0.705(4)_0.7	0.063(4)_1+0	-0.017(2) ⁺¹ _{-0.6}	$-0.007(2)^{+0.6}_{-0.3}$	-0.007(3) ⁺⁰ _{-0.6}	0.003(2)_{-0.4}^{+0}
HE DPA-LO	0.997	-0.265	-0.720	0.039	0.0105[2]	-0.00001[49]	0.00004[41]	0.0001[3]
HE DPA-NLOEW-prodZ	0.997	-0.267	-0.726	0.040	0.0095[2]	-0.0003[5]	-0.0012[4]	-0.0004[3]
HE DPA-NLOEW-decayZ	0.997	-0.265	-0.720	0.026	0.0070[2]	0.000004[441]	0.00005[41]	0.0001[2]
HE DPA-NLOEW	0.997	-0.267	-0.726	0.027	0.0060[2]	-0.0003[5]	-0.0011[4]	-0.0004[2]
CS FULL-LO	1.255(2)^{+2}_{-2}	0.240(2)^{+3}_{-2}	-0.488(4)_0.3	-0.061(3) ⁺¹ ₋₀	0.035(3)_0.1	$-0.001(3)^{+0.3}_{-0}$	0.011(2)_{-0.2}^{+0.7}	-0.003(2) ^{+0.3}
CS DPA-LO	1.200	0.305	-0.519	-0.023	0.036	-0.00005[59]	0.00002[30]	-0.0001[3]
CS DPA-NLOEW-prodZ	1.205	0.301	-0.521	-0.024	0.036	0.0008[6]	0.0011[3]	0.0004[3]
CS DPA-NLOEW-decayZ	1.200	0.305	-0.519	-0.015	0.024	-0.00005[57]	0.00001[27]	-0.0001[2]
CS DPA-NLOEW	1.205	0.301	-0.521	-0.016	0.023	0.0008[5]	0.0011[3]	0.0004[2]

p_T^W distributions: CS vs. HE, NLOQCD effects (CMS) 13 TeV, fiducial phase space as in [CMS, Phys. Lett. B766, 268 (2017)]

- ▶ Bands show PDF errors, $\Delta_{NLOQCD} = (NLOQCD LO)/LO$.
- Question to CMS: lepton-photon recombination parameter?

Le Duc Ninh (IFIRSE, Quy Nhon)

p_T^W distributions: NLOEW effects (CMS)

13 TeV, fiducial phase space as in [CMS, Phys. Lett. B766, 268 (2017)]

▶ Bands show statistical errors, $\Delta_{NLOEW} = (NLOEW - LO)/LO$.

p_T^W distributions: CS vs. HE, NLOQCD effects (ATLAS)

13 TeV, fiducial phase space as in [ATLAS, Phys. Lett. B762, 1 (2016)]

Bands show PDF errors, rather large at high p_T.

p_T^W distributions: NLOEW effects (ATLAS)

13 TeV, fiducial phase space as in [ATLAS, Phys. Lett. B762, 1 (2016)]

Bands show statistical errors.

Fiducial cross sections at 13 TeV, $W^{\pm}Z \rightarrow l'\nu ll$

ATLAS, one channel:

$$\begin{split} \sigma_{\text{ATLAS}}^{\text{fid.}} &= 63.2 \pm 3.2(\text{stat.}) \pm 2.6(\text{sys.}) \pm 1.5(\text{lumi.}) \, \text{fb} \\ \sigma_{\text{this work}}^{\text{fid.}} &= 58.9(\text{NLOQCD}) - 0.4(\text{EW cor.}) \pm 0.7(\text{PDF}) \pm 2.0(\text{scale}) \, \text{fb} \end{split}$$

CMS, four channels (*eee*, μee , $e\mu\mu$, $\mu\mu\mu$):

$$\sigma_{\text{CMS}}^{\text{fid.}} = 258 \pm 21(\text{stat}) \pm 20(\text{syst}) \pm 8(\text{lumi}) \text{ fb}$$

$$\sigma_{\text{this work}}^{\text{fid.}} = 301.7(\text{NLOQCD}) - 0.2(\text{EW cor.}) \pm 3.4(\text{PDF}) \pm 12.0(\text{scale}) \text{ fb}$$

Agreement with ATLAS within 1.0 σ , with CMS 1.3 σ .

Summary

- ▶ Results for polarization observables (fractions, angular coefficients, distributions) have been obtained at full NLOQCD and NLOEW in DPA for $pp \rightarrow WZ \rightarrow 3l + v$.
- Results for both Collins-Soper and Helicity frames are provided.
- ► NLOQCD corrections can reach 170% (60%) for p^W_T distributions, CMS (ATLAS) fiducial cuts. NLOEW corrections are within 15%.
- Perfect agreements with ATLAS and CMS for fiducial cross sections. Looking forward to similar comparisons for 8 angular coefficients and distributions.
- Publication in preparation (for both ATLAS and CMS).

Thank you for your attention!

BACKUP

CMS fiducial cut

A charged lepton is combined with a final-state photon if their momenta satisfies the condition of $\Delta R(l, \gamma) \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.1$. The dressed lepton's momentum is the sum of the initial two momenta. After this recombination step, we use the dressed lepton's momentum for kinematical cuts and distributions.

$$p_{T,e} > 20 \text{ GeV}, \quad p_{T,\mu}^{\text{leading}} > 20 \text{ GeV}, \quad p_{T,\mu}^{\text{sub-leading}} > 10 \text{ GeV}, \quad |\eta_l| < 2.5,$$

 $60 < m_{\mu^+\mu^-} < 120 \text{ GeV}.$

ATLAS fiducial cut

A charged lepton is combined with a final-state photon if their momenta satisfies the condition of $\Delta R(l, \gamma) \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.1$. The dressed lepton's momentum is the sum of the initial two momenta. After this recombination step, we use the dressed lepton's momentum for kinematical cuts and distributions.

$$\begin{split} p_{T,e} &> 20 \,\text{GeV}, \quad p_{T,\mu} > 15 \,\text{GeV}, \quad |\eta_l| < 2.5, \\ |m_{\mu^+\mu^-} - M_Z| &< 10 \,\text{GeV}, \quad \Delta R(\mu^+,\mu^-) > 0.2, \quad \Delta R(e^+,\mu^{\mp}) > 0.3, \\ m_{T,W} &= \sqrt{2 p_{T,\nu} p_{T,e} [1 - \cos \Delta \phi(e,\nu)]} > 30 \,\text{GeV} \end{split}$$

p_T^Z distributions: CS vs. HE, NLOQCD effects (CMS)

Le Duc Ninh (IFIRSE, Quy Nhon)

p_T^Z distributions: NLOEW effects (CMS)

Le Duc Ninh (IFIRSE, Quy Nhon)

p_T^Z distributions: CS vs. HE, NLOQCD effects (ATLAS)

p_T^Z distributions: NLOEW effects (ATLAS)

Le Duc Ninh (IFIRSE, Quy Nhon)

Results: polarization fractions W^+ and Z

13 TeV, ATLAS fiducial:

Method	$f_L^{W^+}$	$f_0^{W^+}$	$f_R^{W^+}$	f_L^Z	f_0^Z	f_R^Z
HE FULL-LO	0.355(2)^{+2}_{-2}	$0.513(1)^{+3}_{-3}$	0.132(2) ^{+0.8} _{-0.7}	0.222(2) ^{+0.8} _{-0.2}	0.517(2) ⁺¹ _{-0.9}	0.261(3)_2+1
HE FULL-NLOQCD	0.320(3)^{+2}_{-3}	$0.508(3)^{+2}_{-2}$	0.172(2) ⁺⁴ ₋₃	0.255(8) ⁺⁵ ₋₁	0.493(2) ⁺² ₋₃	0.252(8)^{+0}_{-3}
HE FULL-NLOEW	0.355	0.512	0.133	0.217	0.518	0.266
HE DPA-LO	0.355	0.512	0.133	0.263	0.498	0.239
HE DPA-NLOEW-prodV	0.356	0.510	0.134	0.262	0.499	0.240
HE DPA-NLOEW-decayV	0.355	0.512	0.133	0.259	0.498	0.243
HE DPA-NLOEW	0.355	0.510	0.135	0.258	0.499	0.244
CS FULL-LO	0.304(3)^{+2}_{-2}	0.699(2)^{+2}_{-2}	$-0.003(1)^{+0.2}_{-0.08}$	0.227(3)^{+0}_{-0.6}	0.627(1) ⁺¹ _{-0.8}	0.145(3) ⁺¹ _{-0.8}
CS FULL-NLOQCD	0.239(3)^{+4}_{-5}	$0.756(2)^{+4}_{-4}$	0.004(2) ⁺¹ _{-0.3}	0.211(5) ^{+0.1} ₋₃	0.634(2)^{+2}_{-3}	0.156(7)^{+3}_{-2}
CS FULL-NLOEW	0.304	0.698	-0.0023[2]	0.212	0.629	0.158
CS DPA-LO	0.271	0.729	-0.0005[3]	0.242	0.600	0.158
CS DPA-NLOEW-prodV	0.271	0.729	-0.0002[3]	0.240	0.603	0.157
CS DPA-NLOEW-decayV	0.271	0.730	-0.0007[3]	0.228	0.600	0.172
CS DPA-NLOEW	0.271	0.729	-0.0004[3]	0.226	0.603	0.171

- NLOQCD from VBFNLO program, NLOEW in DPA our own code.
- Statistical errors (shown in [] where significant) about 10 times smaller than PDF errors.
- Watch: Full vs. DPA, corrections to production and decays.

Le Duc Ninh (IFIRSE, Quy Nhon)

Results: W^+ angular coefficients

Method	A ₀	A ₁	A2	A ₃	A4	A ₅	A ₆	A ₇
HE FULL-LO	1.026(3)^{+5}_{-6}	-0.286(3) ⁺⁴ ₋₃	$-1.314(4)^{+2}_{-4}$	$-0.251(3)^{+3}_{-2}$	$-0.446(7)^{+3}_{-3}$	$-0.003(2)^{+0.3}_{-0.2}$	$-0.001(2)^{+0.03}_{-0.01}$	-0.004(2) ^{+0.2}
HE FULL-NLOQCD	1.016(6)^{+4}_{-3}	$-0.325(4)^{+3}_{-2}$	$-1.414(8)^{+12}_{-11}$	-0.230(7) ⁺³ _{-0.4}	-0.296(9) ⁺¹³ ₋₉	$-0.001(4)^{+0.6}_{-0.4}$	0.0004(38)^{+15}_{-6}	0.005(8)^{+0.1}_{-2}
HE FULL-NLOEW	1.023	-0.285	-1.317	-0.252	-0.444	-0.0038[3]	-0.0037[4]	0.0028[3]
HE DPA-LO	1.023	-0.326	-1.404	-0.156	-0.445	-0.0001[3]	0.00001[39]	0.0001[3]
HE DPA-NLOEW-prod W^+	1.020	-0.324	-1.406	-0.156	-0.442	-0.0018[4]	-0.0031[4]	0.0067[3]
HE DPA-NLOEW-decayW+	1.024	-0.326	-1.405	-0.157	-0.443	-0.0001[3]	0.00001[39]	0.0001[3]
HE DPA-NLOEW	1.020	-0.324	-1.407	-0.157	-0.441	-0.0018[4]	-0.0032[4]	0.0067[3]
CS FULL-LO	1.397(3)^{+4}_{-5}	$0.230(3)^{+3}_{-3}$	-0.944(6)_3^{+0.8}	0.003(3)_{-0.1}^{+0.1}	$-0.613(8)^{+4}_{-4}$	$-0.0005(20)^{+1}_{-1}$	0.003(2)_{-0.2}^{+0.1}	0.004(2)^{+0}_{-0.3}
CS FULL-NLOQCD	1.512(5)^+87	$0.192(5)^{+1}_{-3}$	$-0.92(1)^{+0.3}_{-0.4}$	$0.061(6)^{+4}_{-4}$	$-0.470(9)^{12}_{-8}$	-0.0006(41) ⁺⁵ ₋₁₁	0.001(5)_1+0	$-0.01(1)^{+0.2}_{-0}$
CS FULL-NLOEW	1.397	0.228	-0.945	0.0052[3]	-0.612	0.0007[4]	0.0056[4]	-0.0028[3]
CS DPA-LO	1.459	0.299	-0.971	-0.073	-0.544	-0.00001[38]	0.00003[38]	-0.0001[3]
CS DPA-NLOEW-prod W^+	1.458	0.297	-0.971	-0.072	-0.543	0.0010[4]	0.0036[4]	-0.0067[3]
CS DPA-NLOEW-decayW ⁺	1.459	0.298	-0.971	-0.072	-0.544	-0.00002[38]	0.00003[39]	-0.0001[3]
CS DPA-NLOEW	1.458	0.297	-0.971	-0.070	-0.543	0.0010[4]	0.0037[4]	-0.0067[3]

Results: Z angular coefficients

Method	A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇
HE FULL-LO	1.035(3)^{+3}_{-2}	-0.304(2)_2+0.9	-0.705(4)_0.7	0.063(4)_1+0	-0.017(2) ⁺¹ _{-0.6}	$-0.007(2)^{+0.6}_{-0.3}$	-0.007(3) ⁺⁰ _{-0.6}	0.003(2)_{-0.4}^{+0}
HE FULL-NLOQCD	0.985(4)^{+3}_{-5}	-0.307(6)_3	-0.73(2)_0.8	0.031(4) ⁺² ₋₂	0.001(7) ⁺³ _{-0.3}	-0.005(8) ⁺² _{-0.4}	-0.003(5) ^{+0.1} ₋₂	$0.003(5)^{+2}_{-0.9}$
HE FULL-NLOEW	1.035	-0.305	-0.711	0.051	-0.0209[2]	-0.0070[4]	-0.0077[4]	0.0028[3]
HE DPA-LO	0.997	-0.265	-0.720	0.039	0.0105[2]	-0.00001[49]	0.00004[41]	0.0001[3]
HE DPA-NLOEW-prodZ	0.997	-0.267	-0.726	0.040	0.0095[2]	-0.0003[5]	-0.0012[4]	-0.0004[3]
HE DPA-NLOEW-decayZ	0.997	-0.265	-0.720	0.026	0.0070[2]	0.000004[441]	0.00005[41]	0.0001[2]
HE DPA-NLOEW	0.997	-0.267	-0.726	0.027	0.0060[2]	-0.0003[5]	-0.0011[4]	-0.0004[2]
CS FULL-LO	1.255(2)^{+2}_{-2}	0.240(2)^{+3}_{-2}	-0.488(4)_0.3	-0.061(3) ⁺¹ ₋₀	0.035(3)_0.1	$-0.001(3)^{+0.3}_{-0}$	0.011(2)_{-0.2}^{+0.7}	-0.003(2)_0+0.3
CS FULL-NLOQCD	1.267(5)_6^+4	0.220(5) ⁺² ₋₁	-0.45(2)_0.2	$-0.022(6)^{+4}_{-2}$	0.024(5)_2+0.5	-0.001(7) ⁺² _{-0.01}	0.006(6)_1^+0	$-0.003(3)^{+1}_{-2}$
CS FULL-NLOEW	1.259	0.235	-0.490	-0.054	0.0232[3]	0.0007[5]	0.0113[3]	-0.0028[3]
CS DPA-LO	1.200	0.305	-0.519	-0.023	0.036	-0.00005[59]	0.00002[30]	-0.0001[3]
CS DPA-NLOEW-prodZ	1.205	0.301	-0.521	-0.024	0.036	0.0008[6]	0.0011[3]	0.0004[3]
CS DPA-NLOEW-decayZ	1.200	0.305	-0.519	-0.015	0.024	-0.00005[57]	0.00001[27]	-0.0001[2]
CS DPA-NLOEW	1.205	0.301	-0.521	-0.016	0.023	0.0008[5]	0.0011[3]	0.0004[2]