XXV Rencontres de Vietnam ICISE, Qui Nhon – August 7, 2018 Top quark production in CMS

- Introduction
- Inclusive tī measurements:
 - eµ inclusive cross section
 - First ℓ +jets observation of pPb \rightarrow tt
- Differential tt measurements
 - Dilepton cross section (ee, eµ, µµ)
 - {+jets cross section
 - Doubly differential
- Single top t-channel cross section
- Single top tW cross section
- Conclusions

Aran Garcia-Bellido On behalf of the CMS Collaboration

Introduction to top quarks at CMS

- Measuring top quark cross sections is important at 13 TeV:
 - Precision tests of QCD calculations
 - tt is a background in almost all other analyses (SUSY, ttH, etc...)
 - Can use to measure m_t , α_s , calibrate b-tagging, constrain PDFs
 - Sensitive to BSM physics
- The LHC is a top factory:

 $\sigma_{t\bar{t}} = 832^{+20}_{-29}(\text{scale}) \pm 35(\text{PDF} + \alpha_{s}) \text{ pb}$ NNLO+NNLL, m_t=172.5 GeV, Czakon and Mitov

Singletop: t-channel (217pb), tW (71pb), s-channel (10pb)
Main backgrounds: W+jets, Z+jets, multijet

0000

A. Garcia-Bellido (Rochester)

Inclusive eµ cross section

- Trigger: dilepton (eμ) trigger
- Event selection:
 - solated OS eµ pair, p_T >20 GeV, $|\eta|$ <2.4
 - ≥2 jets, p_T>30 GeV, |η|<2.4</p>
 - ≥1 b-tag: $ε_b ~ 67\%$, $ε_{qg} ~ 1\%$, $ε_c ~ 15\%$
 - m_{eµ} > 20 GeV
- Background estimation:
 - DY normalized by a data/MC SF from Z peak in data
 - Non-W/Z from SS control region
 - Single top, diboson from MC
- Cut and Count

$$\sigma_{t\bar{t}} = \frac{N_{\text{data}} - N_{\text{bkg}}}{\varepsilon A \mathcal{L}}$$

 $\sigma_{t\bar{t}}$ = 793 ± 8(stat) ± 38(syst) ± 21(lumi) pb

Values for m_t=172.5 GeV. For m_t=173.34 GeV $\sigma_{t\bar{t}}$ decreases by ~0.7%.

Relative error of 5.6%

(was 3.9% for 20 fb⁻¹ 8 TeV data)

A. Garcia-Bellido (Rochester)

EPJC 77 (2017) 172

-		Number of
	Source	$e^{\pm}\mu^{\mp}$ events
	Drell-Yan	$24 \pm 9 \pm 4$
	Non-W/Z leptons	$109\pm50\pm33$
	Single top quark	$463\pm 6\pm 145$
	VV	$15\pm2\pm5$
	tī V	$31 \pm 1 \pm 10$
-	Total background	$642\pm52\pm149$
98%	tī dilepton signal	$10199 \pm 14 \pm 462$
	Data	10368

Observation of pPb \rightarrow tt at 8.16 TeV

- Signal extraction based on fits of the W→jj' mass in different b-jet and lepton flavor categories
- Top candidates minimize the m_{lvb} and m_{ii'b} difference
- Use low MET 0 btag sample to cross check QCD modeling

Measured: $\sigma = 45 \pm 8$ nb

 $\sigma = 59.0 \pm 5.3 (PDF)^{+1.6}_{-2.1}$ (scale) nb

- In agreement with NNLO+NNLL pQCD with NLO proton/nuclear PDFs
- Main uncertainties: b tagging efficiency, bkg prediction

Summary of inclusive measurements

- *l*+jets at 5 TeV: JHEP 03 (2018) 115
 - σ_{tt} = 69.5±6.1(stat)±5.6(syst)±1.6(lumi) pb → tot unc: 12%
 - New measurements at 13 TeV agree with each other and NNLO+NLL prediction
 - Now working on reducing systematic uncertainties
 - Hadronization, PS, modelling, JES, b-tagging, efficiencies

Dilepton differential cross section

- Trigger on isolated dileptons and *ll*+jets topologies
- Same background estimations as inclusive σ
- Kinematic reconstruction (94% efficient)
 - Constraints: $m_t = 172.5 \text{ GeV} (x2)$, $m_w = 80.4 \text{ GeV} (x2)$, $(p_v + p_{\bar{v}})_T = \text{MET}$
 - Reconstruct each event 100 times, smearing inputs by their resolution
 - Consider weighted average
 - Derive scale factor ε_{DATA}/ε_{MC}

Unfold to remove detector effects

- Particle level: proxy of top quark based on *l*, jets inside acceptance
- Parton level: after radiation but before decays → compare to theory

$$\frac{d\sigma}{dX^{i}} = \frac{1}{\int \mathcal{L}dt \cdot \Delta X^{i}} \sum_{j} M_{ij}^{-1} f_{\text{acc}}^{j} \left(N_{obs}^{j} - N_{bkg}^{j} \right)$$

A. Garcia-Bellido (Rochester)

Dilepton differential results

Calculate normalized differential cross sections to reduce systematics
Good agreement overall with beyond NLO QCD calculations

8

Dilepton differential: EFT constraint

- The top quark chromomagnetic dipole moment is constrained from the differential tt cross section as a function of Δ_φ(ℓ,ℓ)
- O_{tG} alters ttg coupling and adds new ttgg
 - Flips t chirality → alters spin correlation → observable in $\Delta_{\varphi}(\ell, \ell)$
 - Increases overall tt rate
- Sensitivity to CMDM parameterized with C_{tG}/Λ^2

-0.06 < C_{tG}//\2 < 0.41 _{95%Cl}

 $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \frac{C_{tG}}{\Lambda^2} O_{tG}$

Differential *l*+jets cross section

- Triggers based on single isolated lepton
- Event selection:
 - 1 isolated lepton with $p_T > 30$ GeV, $|\eta| < 2.1$
 - ≥4 jets with p_T >25 GeV, $|\eta|$ <2.4
 - \geq 2 b-tagged ($\epsilon_{b} \approx 65\%$; $\epsilon_{qg} \approx 3\%$)
- Kinematic reconstruction
 - Use mass constraints of m_t, m_w on leptonic side to obtain neutrino p_z neutrino (NIM 736, 169 [2014]) and correct b-jet on leptonic side
 - Calculate probability λ_m according to 2D mass distributions of m_t , m_w on hadronic side to obtain best permutation of jets
 - Choose lowest combined -log(λ) solution
 - Correct tt reconstruction efficiency: 63% on average, 80% for 4jet, ~40% for 7jet events

A. Garcia-Bellido (Rochester)

Parton level distributions l+jets PRD 97 112003 (2018)

- Unfolded and extrapolated to full phase space
- Powheg+Herwig++ better at parton level, but too soft at particle level
- Also performed additional jet measurements

Top p_{T} mismodeling?

- Slope in top p_T distribution: data was softer than MC in 8 TeV
 - Largely improved by NNLO QCD + NLO EW calculations [Czakon, 2017]
- Big effect from different PS models
- Both in parton and particle level
- Trend still continues in 13 TeV data

Impact on PDFs

Doubly differential tt cross sections are sensitive to the gluon PDF

- W asymmetry especially sensitive to u/d ratio and sea PDFs
- Similar sensitivity as inclusive jet data (arXiv:1609.05331)
- Approximate NNLO $O(\alpha_s^4)$ are not yet available
- Powerful constraints for $0.01 < x < 0.3 \rightarrow Now$ included in NNPDF 3.1!

Single top t-channel cross section

- Event selection
 - 1 isolated e or μ , $p_T > 22$ GeV, $|\eta| < 2.1$
 - 2 jets, p_τ>40 GeV, |η|<4.7</p>
 - 1 b-tag (MVA) (ε_b≈45% ; ε_{qg}≈0.1%)
- W+jets from simulation, validated outside top mass window: 130<m_{lvb}<225 GeV</p>
- QCD shape from data, normalization from fit of m_T(W) and cut: m_T(W)>50 GeV
- 2j1t is the signal region, use 3j1t and 3j2t to constrain tt
- Use 11 variables combined in MVA

Process	μ^+	μ^{-}
Top quark pair production	81172 ± 13480	81572 ± 13517
tW	8755 ± 1799	8762 ± 1843
W/Z+jets	38199 ± 12334	33373 ± 10568
QCD	6732 ± 3241	6713 ± 3235
Single top quark t-channel	23628 ± 2918	14574 ± 1883
Total expected	158486 ± 18870	144994 ± 17658
Observed	166446	151440

Single top t-channel results

Cross section is limited by systematics:

15% overall unc., 12% modeling, 6% exp.

► Ratio $\sigma_t / \sigma_{\tilde{t}} = 1.65 \pm 0.02$ (stat) ± 0.04 (syst) \leftarrow Most precise measurement!

$$\begin{split} \sigma_{tch} &= 219 \pm 1.5(stat) \pm 33(sys) \, \text{pb} \\ \sigma_{tch} &= 217.0 \pm 6.6(scale) \pm 6.2(\text{PDF}) \, \text{pb} \, [\text{NLO}] \\ \text{NNLO available: } 214.5 \pm 0.6 \, [\text{PLB 736, 58 (2014)}] \\ &|\text{fV}_{tb}| = 1.00 \pm 0.05(exp) \pm 0.02(th) \end{split}$$

CMS-PAS-TOP-17-011

A. Garcia-Bellido (Rochester)

Single top tW channel

Event selection:

- Isolated e[±] and μ^{+} p_T>20 GeV, |η|<2.4
- I jet p₇>30 GeV, |η|<2.4</p>
- 1 b-tag MVA $ε_{b}$ ~70%, $ε_{q}$ ~1%, $ε_{c}$ ~15%
- Signal sample: diagram removal scheme to remove overlap with tt at NLO
- tt regions: 2 jets+1 or 2 b-tags
- Signal strength measured through ML fit to BDT in 1j1b, 2j1b and subleading jet p_T in 2j2b
- **BDT** inputs: leading loose jet p_T , p_T^{sys} , leading jet p_T , $(p_T^{e}+p_T^{\mu})/H_T$, $N_{loosejets}$, ...
 - Loose jets: 20<p_T<30 GeV (expect 0 in signal, several in tt events)</p>

A. Garcia-Bellido (Rochester)

Single top tW channel results

Dominant uncertainties: ℓ ID efficiencies, trigger, JES, tt modeling ■ 10% systematic, 3.3% lumi, 2.8% statistical → Total 11%

Measured: σ_{tw} = 63.1 ± 1.8(stat) ± 6.4(syst) ± 2.1(lum) pb

aNNLO: σ_{tw} = 71.7 ± 1.8(scale) ± 3.4(PDF) pb [Kidonakis, arXiv:1506.04072]

arXiv: 1805.07399

A. Garcia-Bellido (Rochester)

Conclusions

- We use the $t\bar{t}$ sample to calibrate b-tagging, PDFs, α_s in PS, high multiplicity events and top kinematics...
 - Are we hiding any new physics in top sector?
- Wealth of measurements in Run2
 - No signature of new physics yet!
 - Very useful for other searches
 - Need precise measurements of ttbb and additional jets properties
- Many measurements now constrained by generator and parton shower uncertainties
- Tough times ahead reducing systematics
 - Constrain hadronization, PS, modelling
 - New two-dimensional measurements probe differences in PS

Single top entering new era of differential measurements and properties

More papers coming with new tools: boosted top tagging, pile-up cleaning algorithms, more channels, new fitting techniques

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Extras

A. Garcia-Bellido (Rochester)

A. Garcia-Bellido (Rochester)

tt+X

CMS Preliminary

A. Garcia-Bellido (Rochester)

Low pileup event μ +jets

A. Garcia-Bellido (Rochester)