INSTITUTE FOR ADVANCED RESEARCH NAGOYA UNIVERSITY

Gravitational wave forest from string axiverse

Yuko Urakawa (Nagoya university, IAR)

I.Soda & Y.U.(1710.00305)

Kitajima, Soda & Y.U. (1807.07037)

w/ Naoya Kitajima (Nagoya U.), Jiro Soda (Kobe U.)

Axions (or ALPs) from string theory

ex. Large Volume Scenario

Conlon et al. (05)

Predicts light mass axions

Scalar potential of axion

continuous shift sym. $\phi \rightarrow \phi + 2\pi n/f$ NP effects $\phi \rightarrow \phi + c$ $n \in \mathbf{Z}$ e.g. instanton effects $V(\phi) \sim \Lambda^4 \cos \phi/f$ Are you sure with $\cos\phi/f$? - Dilute instanton gas approximation for $\phi/f << 1$ $V(\phi) \propto \phi^2$ for $\phi/f \ge 1$ $\cos\phi/f$? Witten(79, 80) SU(N) in large N $f_{\rm eff} \propto N$ Plateau structure Dubovski et al. (11), Yamazaki & Yonekura(17), … $V(\phi) = M^4 \left[1 - \frac{1}{(1 + (\phi/F)^2)^p} \right]$

Scalar potential of axion

iii) Superposition of multiple cosine terms

Plateau phenomenology

Search for string axiverse

Soda & Y.U.(17) Kitajima, Soda & Y.U.(18)

Contents

1. Evolution of k=0 mode

- 2. Evolution of $k \neq 0$ mode
 - Linear
 - Non-linear

3. Pheno. Prediction: GW forests

Normalization

Neglect back-reaction on geometry

 \rightarrow Axion's dynamics is independent of (m, f)

$$\partial_t^2 \phi + 3H \partial_t \phi - \frac{\partial^2}{a^2} \phi + V_{,\phi} = 0 \qquad a \propto t^p, \ H = \frac{p}{t}$$
$$\int \tilde{x}^\mu \equiv m x^\mu \qquad \tilde{\phi} \equiv \frac{\phi}{f} \qquad V(\phi) = (mf)^2 \tilde{V}(\tilde{\phi}), \qquad \tilde{\phi} \equiv \frac{\phi}{f}$$
$$\partial_{\tilde{t}}^2 \tilde{\phi} + \frac{3p}{\tilde{t}} \partial_{\tilde{t}} \tilde{\phi} - \frac{\partial_{\tilde{\mathbf{x}}}^2}{a^2} \tilde{\phi} + \tilde{V}_{,\tilde{\phi}} = 0$$

Evolution of *k*=0 mode

$$\begin{split} \psi &\equiv a^{3/2} \tilde{\phi} & \frac{m}{H} = \frac{mt}{p} \sim \tilde{t} \\ & \frac{d^2}{d\tilde{t}^2} \psi + \left[\frac{(**)}{\tilde{t}^2} + \frac{\tilde{V}_{,\tilde{\phi}}}{\tilde{\phi}} \right] \psi = 0 & (**) : O(1) \text{ number} \\ & >> \quad \text{slow-roll} \\ & \sim \quad \text{onset of oscillation} \\ & << \quad \text{oscillation} \\ & \text{e.g. } V \propto \varphi^2 \rightarrow \psi \sim \cos mt \\ & \text{if initially } \left| \frac{\tilde{V}_{,\tilde{\phi}}}{\tilde{\phi}} \right| <<1, \quad \tilde{t}_{osc} \sim \frac{m}{H_{osc}} \gg 1 \quad \text{ delayed oscillation} \\ & \text{Plateau condition, } \tilde{V} \text{ shallower than } \tilde{\phi}^2 \end{split}$$

Contents

1. Evolution of k=0 mode

3. Pheno. Prediction: GW forests

Linear analysis

Linearized KG eq. in FRW universe (w/ k/aH << 1)

$$\frac{d^2}{d\tilde{t}^2} \chi_k + \omega_k^2 \chi_k = 0 \qquad \chi_k \equiv a^{3/2} \frac{\delta \phi_k}{f}$$
$$\omega_k^2 \equiv \left(\frac{k}{ma}\right)^2 + \tilde{V}_{\tilde{\phi}\tilde{\phi}}$$

see e.g. Johnson & Kamíonkowskí (08) for analyses w/metric perturbations

3 phases for axions in plateau

(1) Slowly rolling down in $\tilde{V}_{\tilde{\phi}\tilde{\phi}} < 0$

Tachyonic inst. $\frac{k}{am} \leq \sqrt{|\tilde{V}_{\tilde{\phi}\tilde{\phi}}|}$

(2) Oscillation between

$$\widetilde{V}_{\widetilde{\phi}\widetilde{\phi}} < 0 \quad \longleftarrow \quad \widetilde{V}_{\widetilde{\phi}\widetilde{\phi}} > 0$$

continues long

(3) Oscillation in $\tilde{V}_{\tilde{\phi}\tilde{\phi}} > 0$ $\tilde{V} = \frac{\tilde{\phi}^2}{2} + \frac{\lambda}{4!}\tilde{\phi}^4 + O(\tilde{\phi}^4)$ corrections sustainable Narrow res.

Soda & Y.U.(17)

Instability in phase 2

$$\tilde{V}_{\tilde{\phi}\tilde{\phi}} < 0 \quad \longleftarrow \quad \tilde{V}_{\tilde{\phi}\tilde{\phi}} > 0$$

$$\frac{d^2}{d\tilde{t}^2}\,\chi_k + \omega_k^2\,\,\chi_k = 0$$

$$\omega_k^2 \equiv \left(\frac{k}{ma}\right)^2 + \tilde{V}_{\tilde{\phi}\tilde{\phi}}$$

peak at k ≠0

Broad res.? Tachyonic inst. like phase 1?

- Tachyonic instability $\frac{k}{am} \leq \sqrt{|\tilde{V}_{\tilde{\phi}\tilde{\phi}}|}$
- "some advantage" for larger k

Instability in phase 2

$$\widetilde{V}_{\widetilde{\phi}\widetilde{\phi}} < 0 \quad \longleftarrow \quad \widetilde{V}_{\widetilde{\phi}\widetilde{\phi}} > 0$$

$$\frac{d^2}{d\tilde{t}^2}\,\chi_k + \omega_k^2\,\,\chi_k = 0$$

$$\omega_k^2 \equiv \left(\frac{k}{ma}\right)^2 + \tilde{V}_{\tilde{\phi}\tilde{\phi}}$$

 k_{peak}

 $\tilde{V}_{\tilde{z}\tilde{z}}^{(\text{plat})}$

Broad res.? Tachyonic inst. like phase 1?

- Tachyonic instability $\frac{k}{am} \leq \sqrt{|\tilde{V}_{\tilde{\phi}\tilde{\phi}}|}$
- To shorten (2), larger k

Two instabilities for plateau axion

Kitajima, Soda & Y.U. (18)

Narrow res. dominant

Flapping res. dominant

- broader peak
- Much more efficient

Lattice simulation

Kitajima, Soda & Y.U. (18)

00

(b) $c = 2, \phi_i = 2f$

Narrow res. dominant Phase 2: Short Flapping res. dominant Phase 2: Long

Lattice simulation N_{grid}=(256)³

Contents

1. Evolution of k=0 mode

- 2. Evolution of $k \neq 0$ mode
 - Linear
 - Non-linear

3. Pheno. Prediction: GW forests

GW spectrum

 $f = 10^{16} \text{ GeV}, c = 5 \text{ and } \phi_i = 3f$

to evaluate the present value, x Ω_r

e.g. GWs emitted during radiation domination

$$\nu_{0} = \frac{\kappa m}{2\pi} \times \left(\frac{\rho_{\rm r,0}}{\rho_{\rm r,\,em}}\right)^{1/4} \simeq 0.78 \,\mathrm{nHz} \,\kappa \left(\frac{m}{H_{\rm em}}\right)^{1/2} \left(\frac{m}{10^{-12} \rm eV}\right)^{1/2}$$

GW forest

Axions from string theory

e.g., Svrcek & Witten (06)

GWs from axion DM

or lower frequency btwn CMB & PTAs?

c = 5 and $\phi_i = 2f$.

(c)

New window of axions in plateau

Theory side

Various instabilities for scalar fields who are initially located at plateau region.

Keys: Delayed oscillation, Flapping term (Phase 2)

Phenomenology side

Predicts bGWs at various frequencies, multi-band obs.?

GWs from axion DM: sweet spot is btwn CMB & PTAs.