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NP effects 

e.g. instanton effects
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- Dilute instanton gas approximation 
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V(φ) ~ Λ4 cosφ/f
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for  φ/f  ≧ 1 

SU(N) in large N
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feff ∝ N Plateau structure
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We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in
which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar
ratio r is naturally bounded from below. This bound originates from the finiteness of the number
of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by
future cosmic microwave background experiments and improved lattice gauge theory calculations of
the ✓-angle dependence of the vacuum energy.

Cosmic inflation is a successful framework in explain-
ing many distinguished features of our Universe, includ-
ing its flatness and the origin of primordial density per-
turbations. There are, however, a plethora of inflation-
ary models proposed in the literature, and we ultimately
need to turn to observations for guidance, to convincingly
answer the question of exactly which inflationary model
describes our Universe.

Future defection of primordial tensor modes in comic
microwave background (CMB) radiation would be ideal
for this purpose. The size of primordial tensor modes is
quantified by the tensor-to-scalar ratio r, and when com-
bined with the observed value of the scalar spectral index
ns, these two parameters severely constrain models of in-
flation. This therefore provides an exciting opportunity
for narrowing down possible models, especially because
values of r ⇠ 10�3 are expected to be within reach in
next-generation CMB measurements (see e.g. Ref. [2]).

The goal of this paper is to study the prediction for ten-
sor modes of the recently-proposed inflationary model of
pure natural inflation [1]. This is arguably the simplest
model of inflation consistent with the current observa-
tional data. It is defined within conventional low-energy
e↵ective field theory and is technically natural, i.e. stable
under quantum corrections.

The model is given by an axionic inflaton � coupling
to four-dimensional pure Yang-Mills gauge fields:

L�FF =
1

32⇡2

�

f
✏
µ⌫⇢�TrFµ⌫F⇢�, (1)

where f is the decay constant and the dimensionless
combination ✓ := �/f plays the role of the ✓-angle of
the Yang-Mills theory. Below we choose the Yang-Mills
gauge group to be SU(N) for simplicity.

The inflaton potential V (�) is determined by the dy-
namics of the pure Yang-Mills theory. For our purposes,
it is useful to parameterize the potential in the form

V (�) = M
4


1� 1

(1 + (�/F )2)p

�
. (2)

Here, M and F are two parameters which have dimen-
sions of mass, and the exponent p > 0 is a dimensionless
parameter. The parameter F plays the role of the e↵ec-
tive decay constant.
This potential is motivated by the holographic compu-

tation of Ref. [3], which gives the parameters M and F

to be

M ⇡
p
N⇤, F ⇡ Nf, (3)

where ⇤ is the dynamical scale of the Yang-Mills theory.
We define the parameter � by

F = ⇡�Nf. (4)

As we will see later, � ⇡ O(1). For our purposes, we use
� and the power p to parameterize the strong-coupling
dynamics of the Yang-Mills theory.1

The potential of Eq. (2) takes approximately the
quadratic form V (�) ⇠ �

2 for � ⌧ F , but it begins to
deviate from this form as �/F becomes larger. Note that
this potential is rather di↵erent from the cosine poten-
tial used in the original model of natural inflation [4, 5],
which is motivated by the instanton approximation—as
explained in Ref. [1], the cosine potential is not theoret-
ically valid for pure Yang-Mills theory, and is also disfa-
vored by the recent observations by Planck [6] and BI-
CEP2/Keck Array [7].
The parameter M in Eq. (2) is determined by the over-

all size of the scalar perturbation as

M ⇠ 1016 GeV. (5)

Thus, to discuss the tensor-to-scalar ratio r and spectral
index ns, only the e↵ective decay constant F and the
power p are relevant. When we vary these parameters,
we obtain a range of r and ns which are in impressive

1 The holographic result in Ref. [3] gives p = 3. We will not be
restricted to this specific value; see Ref. [1].
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Scalar potential of axion 

Potential can be more flatten than

continuous shift sym.
φ → φ + c n ∈ Z

φ → φ + 2πn/f
NP effects 

e.g. instanton effects

iii) Superposition of multiple cosine terms 
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Onset of oscillation

Plateau phenomenology

~ Λ (w=-1)

~ dust (w=0)

Transition



Onset of oscillation
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Normalization

Neglect back-reaction on geometry 

Axion’s dynamics is independent of ( m, f ) 

@
2
t �+ 3H@t�� @

2

a2
�+ V,� = 0 a / t

p
, H =

p

t

@2
t̃ �̃+

3p

t̃
@t̃�̃� @2

x̃

a2
�̃+ Ṽ,�̃ = 0

x̃µ ⌘ mxµ

the single branch does not preserve the symmetry under � ! �+ 2⇡f , while the periodic

symmetry is recovered for the true vacuum energy, which is determined by the minimum

values among the di↵erent branches [34, 4, 37]. As shown in Refs. [4, 37], for small values

of F , the prediction in pure natural inflation becomes compatible with the constraint from

Planck 15 [38].

In general, the scalar potential of an axion predicted in string theory acquires multiple

cosine terms through the non-perturbative e↵ects. Let us consider the case where the scalar

potential includes the following two cosine terms as

V (�) = ⇤4
1

✓
1� cos

�

f1

◆
� ⇤4

2

✓
1� cos

�

f2

◆
+ · · ·

with |⇤1 � ⇤2|/⇤1 ⌧ 1 and |f1 � f2|/f1 ⌧ 1, while they do not exactly coincide. Then,

since the quadratic contributions are cancelled between these two terms, the potential

becomes shallower than the quadratic form around the potential maximum, even though

the potential terms generated by non-perturbative corrections are simply in the cosine

form.

Alternatively, in case the axion has a non-canonical kinetic term or the axion is non-

minimally coupled with gravity, the scalar potential can get flatten after the canonical

normalization. Therefore, even if the potential of the axion is given by the conventional

cosine form, the scalar potential can have a plateau region after the canonical normalization.

In Refs. [7, 8, 9], it was shown that this class of models, dubbed as ↵-attractors, rather

generically has a similar potential structure such as f(') with ' = tanh�/
p
6↵ (see also

Ref. [6] for an earlier study). This class of potentials typically becomes a flat plateau for

� >
p
6↵. Notice that in these arguments, the field � appears as a real part of a modulus

field and is not an axion.

Being motivated by the theoretical motivation, we investigate the dynamics of a scalar

field with a shallow region in the scalar potential and phenomenological consequences. For

this purpose, we consider a canonical scalar field � with a potential given by

V (�) = (mf)2 Ṽ (�̃) , �̃ ⌘
�

f
, (2.3)

requesting that Ṽ (�̃) should satisfy the following properties:

i) Ṽ (�̃) ! �̃2/2 in the limit �̃ ! 0,

ii) Ṽ (�)/�̃2
! 0 in the limit �̃ ! 1.

The second condition requires that the potential should be shallower than the quadratic

potential. Most of the properties which will be discussed in this paper follow only from

these two conditions. Especially, our discussion can apply to a general scalar field, not

only to an axion. When we consider axions, we additionally require Z2 symmetry of the

scalar potential, since axions are pseudo scalar fields. The parameter f agrees with the

conventional decay constant in the case of the conventional cosine potential. The mass

m determines the onset time of the oscillation (under a certain initial condition) and f

determines the energy density of the axion for a given m.
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Evolution of k=0 mode

 ⌘ a3/2�̃

d2

dt̃2
 +

"
(⇤⇤)
t̃2

+
Ṽ,�̃

�̃

#
 = 0

m

H
=

mt

p
⇠ t̃

(**) : O(1) number

>> slow-roll

<< oscillation

~ onset of oscillation

e.g.  V ∝ φ2   →  ψ ~ cos mt

if initially          <<1, 

�̃x,i ⌘ d�̃/dx(xi) for each p. The Hubble parameter at xosc for a given m is determined as

Hosc = m/xosc. In the two limits |�̃| � 1 and |�̃| ⌧ 1, the equation of motion for �̃ can be

solved analytically. For |�̃| � 1, while the axion is located at the plateau region, we obtain

�̃(x) ' �̃i �
xi

1� 3p
�̃x,i

"
1�

✓
x

xi

◆1�3p
#

(2.5)

for p 6= 1/3. Especially in the early stage x ' xi, the axion behaves as a cosmological

constant. On the other hand, for a su�ciently late stage, where we can approximate the

potential by the quadratic form as Ṽ ' �̃2/2, we also can solve the equation of motion

analytically as

�̃(x) = x�⌫ [C1J⌫(px) + C2Y⌫(px)] (2.6)

with ⌫ ⌘ (3p � 1)/2. Here, C1 and C2 are integration constants and J⌫(x) and Y⌫(x) are

Bessel functions of the first kind and the second kind, respectively. In general, Eq. (2.4)

can be solved only numerically in the intermediate range.

In order to give a closer look on the background dynamics, here let us change the

variable into  ⌘ x3p/2�̃ / a3/2�̃. Then, the equation of motion (2.4) is rewritten as

d2 

dx2
+

"
3p

2

✓
1�

3p

2

◆
1

x2
+ p2

Ṽ,�̃

�̃

#
 = 0 . (2.7)

When the second term in the square brackets is negligible, this equation reproduces the

solution (2.5), which slowly rolls down the potential. When the two terms in the square

brackets become comparable, i.e.,

x2osc '
3(2� 3p)

4p

1

|F0(�̃)|
, F0(�̃) ⌘

1

�̃

dṼ

d�̃
, (2.8)

the axion starts to oscillate. Here, for our convenience, we introduced the function F0(�),

which characterizes the gradient of the scalar potential.

For the quadratic potential, since Ṽ,�̃ = �̃, these two terms always become comparable

around x ' 1 (except for p = 2/3, where the first term vanishes). On the other hand,

when the axion is located at the plateau region, F(�) takes a value with |F(�)| ⌧ O(1).

Then, the first term in the square brackets of Eq. (2.7) still dominates the second term at

x ' O(1). In this case, the oscillation starts later than the time with H ' m, i.e., xosc > 1.

As will be discussed in the next subsection, a significant delay of the oscillation leads to

an exponential growth of the inhomogeneity through the self-interaction of the axion. The

condition for the delayed onset of the oscillation, i.e., xosc > 1, is given by

|F0| ⌧ 1 . (2.9)

In addition, when the following conditions

|Fn+1| ⌧ 1, Fn+1 ⌘
1

H

d

dt
Fn =

x

p

d

dx
Fn (2.10)
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t̃osc ⇠
m

Hosc
� 1 delayed oscillation

Plateau condition,  V shallower than φ2 ~ ~



Scalar potential
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since the quadratic contributions are cancelled between these two terms, the potential

becomes shallower than the quadratic form around the potential maximum, even though

the potential terms generated by non-perturbative corrections are simply in the cosine

form.
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cosine form, the scalar potential can have a plateau region after the canonical normalization.

In Refs. [7, 8, 9], it was shown that this class of models, dubbed as ↵-attractors, rather

generically has a similar potential structure such as f(') with ' = tanh�/
p
6↵ (see also

Ref. [6] for an earlier study). This class of potentials typically becomes a flat plateau for

� >
p
6↵. Notice that in these arguments, the field � appears as a real part of a modulus

field and is not an axion.

Being motivated by the theoretical motivation, we investigate the dynamics of a scalar

field with a shallow region in the scalar potential and phenomenological consequences. For

this purpose, we consider a canonical scalar field � with a potential given by

V (�) = (mf)2 Ṽ (�̃) , �̃ ⌘
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f
, (2.3)

requesting that Ṽ (�̃) should satisfy the following properties:

i) Ṽ (�̃) ! �̃2/2 in the limit �̃ ! 0,

ii) Ṽ (�)/�̃2
! 0 in the limit �̃ ! 1.

The second condition requires that the potential should be shallower than the quadratic

potential. Most of the properties which will be discussed in this paper follow only from

these two conditions. Especially, our discussion can apply to a general scalar field, not

only to an axion. When we consider axions, we additionally require Z2 symmetry of the

scalar potential, since axions are pseudo scalar fields. The parameter f agrees with the

conventional decay constant in the case of the conventional cosine potential. The mass

m determines the onset time of the oscillation (under a certain initial condition) and f

determines the energy density of the axion for a given m.
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where         satisfies

A plateau-type potential generically has inflection points at �̃ = ±�̃c with �̃c = O(1),

i.e., Ṽ�̃�̃ < 0 for |�̃| > �̃c and Ṽ�̃�̃ > 0 for |�̃| < �̃c. If the axion was initially located at the

plateau region, the subsequent time evolution can be divided into the following phases:

Phase 1. Rolling down in the plateau region

Phase 2. Anharmonic oscillation beyond the inflection point

Phase 3. Anharmonic oscillation within the inflection point

Phase 4. Harmonic oscillation

The phase 1 corresponds to the moment shortly before the oscillation. The axion rolls

down the negative curvature region of the potential (V�� < 0). The phase 2 corresponds to

the oscillation between the negative curvature region (Ṽ�̃�̃ < 0) and the positive curvature

region (Ṽ�̃�̃ > 0). The dynamics turns to the phase 3 when the oscillation amplitude

becomes smaller than �̃c, in which the axion oscillates only in the positive curvature region

but it is still anharmonic oscillation (Ṽ�̃�̃ 6= 1). Finally, it settles down to the phase 4

after the oscillation amplitude becomes su�ciently small where the potential can be well

approximated by the quadratic form (Ṽ�̃�̃ = 1). In this phase, the axion undergoes the

harmonic oscillation whose amplitude decays proportional to a�3/2.
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V ( !φ)

 
!φ

 

1
2
!φ 2

 1− cos
!φ
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Figure 1: The plot shows the quadratic potential, the cosine potential, and the ↵ attractor type
potential for c = 0, 1.

As a specific example of the potential which has a plateau region, here let us consider

an ↵ attractor type potential [7, 8, 9] given by

Ṽ (�̃) =
1

2

(tanh �̃)2

1 + c(tanh �̃)2
(2.10)

with c � 0 being a numerical constant. The potential form of Eq. (2.10) is shown in Fig.1 for

c = 0, 1 together with the quadratic potential and the cosine type potential. We followed
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Phase 1. Rolling down in the plateau region

Phase 2. Anharmonic oscillation beyond the inflection point

Phase 3. Anharmonic oscillation within the inflection point

Phase 4. Harmonic oscillation

The phase 1 corresponds to the moment shortly before the oscillation. The axion rolls

down the negative curvature region of the potential (V�� < 0). The phase 2 corresponds to

the oscillation between the negative curvature region (Ṽ�̃�̃ < 0) and the positive curvature

region (Ṽ�̃�̃ > 0). The dynamics turns to the phase 3 when the oscillation amplitude

becomes smaller than �̃c, in which the axion oscillates only in the positive curvature region

but it is still anharmonic oscillation (Ṽ�̃�̃ 6= 1). Finally, it settles down to the phase 4

after the oscillation amplitude becomes su�ciently small where the potential can be well

approximated by the quadratic form (Ṽ�̃�̃ = 1). In this phase, the axion undergoes the

harmonic oscillation whose amplitude decays proportional to a�3/2.
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potential for c = 0, 1.

As a specific example of the potential which has a plateau region, here let us consider

an ↵ attractor type potential [7, 8, 9] given by

Ṽ (�̃) =
1

2

(tanh �̃)2

1 + c(tanh �̃)2
(2.10)

with c � 0 being a numerical constant. The potential form of Eq. (2.10) is shown in Fig.1 for

c = 0, 1 together with the quadratic potential and the cosine type potential. We followed
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plateau region, the subsequent time evolution can be divided into the following phases:

Phase 1. Rolling down in the plateau region

Phase 2. Anharmonic oscillation beyond the inflection point
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Phase 4. Harmonic oscillation

The phase 1 corresponds to the moment shortly before the oscillation. The axion rolls

down the negative curvature region of the potential (V�� < 0). The phase 2 corresponds to

the oscillation between the negative curvature region (Ṽ�̃�̃ < 0) and the positive curvature

region (Ṽ�̃�̃ > 0). The dynamics turns to the phase 3 when the oscillation amplitude

becomes smaller than �̃c, in which the axion oscillates only in the positive curvature region

but it is still anharmonic oscillation (Ṽ�̃�̃ 6= 1). Finally, it settles down to the phase 4

after the oscillation amplitude becomes su�ciently small where the potential can be well

approximated by the quadratic form (Ṽ�̃�̃ = 1). In this phase, the axion undergoes the

harmonic oscillation whose amplitude decays proportional to a�3/2.
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As a specific example of the potential which has a plateau region, here let us consider

an ↵ attractor type potential [7, 8, 9] given by

Ṽ (�̃) =
1

2

(tanh �̃)2

1 + c(tanh �̃)2
(2.10)

with c � 0 being a numerical constant. The potential form of Eq. (2.10) is shown in Fig.1 for

c = 0, 1 together with the quadratic potential and the cosine type potential. We followed
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                      <<1 

�̃x,i ⌘ d�̃/dx(xi) for each p. The Hubble parameter at xosc for a given m is determined as

Hosc = m/xosc. In the two limits |�̃| � 1 and |�̃| ⌧ 1, the equation of motion for �̃ can be

solved analytically. For |�̃| � 1, while the axion is located at the plateau region, we obtain

�̃(x) ' �̃i �
xi

1� 3p
�̃x,i

"
1�

✓
x

xi

◆1�3p
#

(2.5)

for p 6= 1/3. Especially in the early stage x ' xi, the axion behaves as a cosmological

constant. On the other hand, for a su�ciently late stage, where we can approximate the

potential by the quadratic form as Ṽ ' �̃2/2, we also can solve the equation of motion

analytically as

�̃(x) = x�⌫ [C1J⌫(px) + C2Y⌫(px)] (2.6)

with ⌫ ⌘ (3p � 1)/2. Here, C1 and C2 are integration constants and J⌫(x) and Y⌫(x) are

Bessel functions of the first kind and the second kind, respectively. In general, Eq. (2.4)

can be solved only numerically in the intermediate range.

In order to give a closer look on the background dynamics, here let us change the

variable into  ⌘ x3p/2�̃ / a3/2�̃. Then, the equation of motion (2.4) is rewritten as

d2 

dx2
+

"
3p

2

✓
1�

3p

2

◆
1

x2
+ p2

Ṽ,�̃

�̃

#
 = 0 . (2.7)

When the second term in the square brackets is negligible, this equation reproduces the

solution (2.5), which slowly rolls down the potential. When the two terms in the square

brackets become comparable, i.e.,

x2osc '
3(2� 3p)

4p

1

|F0(�̃)|
, F0(�̃) ⌘

1

�̃

dṼ

d�̃
, (2.8)

the axion starts to oscillate. Here, for our convenience, we introduced the function F0(�),

which characterizes the gradient of the scalar potential.

For the quadratic potential, since Ṽ,�̃ = �̃, these two terms always become comparable

around x ' 1 (except for p = 2/3, where the first term vanishes). On the other hand,

when the axion is located at the plateau region, F(�) takes a value with |F(�)| ⌧ O(1).

Then, the first term in the square brackets of Eq. (2.7) still dominates the second term at

x ' O(1). In this case, the oscillation starts later than the time with H ' m, i.e., xosc > 1.

As will be discussed in the next subsection, a significant delay of the oscillation leads to

an exponential growth of the inhomogeneity through the self-interaction of the axion. The

condition for the delayed onset of the oscillation, i.e., xosc > 1, is given by

|F0| ⌧ 1 . (2.9)

In addition, when the following conditions

|Fn+1| ⌧ 1, Fn+1 ⌘
1

H

d

dt
Fn =

x

p

d

dx
Fn (2.10)
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Linear analysis

�k ⌘ a3/2
��k

f
d2

dt̃2
�k + !2

k �k = 0

Linearized KG eq. in FRW universe (w/ k/aH << 1)

Figure 3: The left panel plot shows the time evolution of  k for the ↵ attractor potential with
c = 0 and the initial condition �̃i = 3. The right panel shows the time evolution of !2

k during the
same time period.

Figure 4: These plots are same as Fig. 3 except that the parameter c is now set to 5.

p = 1/2. Since we chose xi as xi = 10�2, we can relate k̃ to k/(am) as k/(am) = k̃/(10
p
x).

We find that the fluctuation of the axion in a certain range of wavenumbers grows very

rapidly. We also showed the time evolution of !2
k, which is important to understand the

growth of the inhomogeneities. Notice that in Fig. 4, !2
k stays at the negative region longer

than in Fig. 3.

In the previous section, we divided the time evolution of �̃ into three di↵erent phases.

In the following, we will show that '̃k undergoes di↵erent types of instabilities in these

three phases, based on linear analysis. Using another variable �k ⌘ a3/2'̃k, we can rewrite

the equation of motion (2.16) as

d2

d(mt)2
�k(t) + !2

k �k(t) = 0 (2.18)

with

!2
k ⌘

✓
k

ma

◆2

+ Ṽ�̃�̃ . (2.19)

Here, we neglected the sub-dominant terms for sub Hubble modes k/(aH) � 1.
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2.3.1 Tachyonic instability: Phase 1

In this phase, the curvature of the scalar potential becomes negative, i.e., Ṽ�̃�̃ < 0. During

this period, !2
� takes a negative value for

k

am


q
|Ṽ�̃�̃| (2.20)

and these modes grow exponentially. In particular, the growth rate for the modes with

k/(am) ⌧
q
|Ṽ�̃�̃| is independent of k.

2.3.2 Flapping resonance instability: Phase 2

In this phase, the homogeneous mode of the axion, �̃ goes back and forth between the

regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0. In this phase, the time evolution of �̃ has not been

settled down to the harmonic oscillation. Because of that, the equation of motion for �k

is not expressed in the form of the Mathieu equation. When Ṽ�̃�̃ < 0, the modes which

satisfy Eq. (2.20) can grow due to the tachyonic instability. Here, we show that when the

background axion field �̃ oscillates between the regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0, the

modes (2.20) do not always grow, even when Ṽ�̃�̃ < 0.

Figure 5: The left panel shows the time evolution of  k for di↵erent wave numbers k̃ = 1 (blue),
k̃ = 103/2 (red), and k̃ = 103 (green) during radiation dominated era. Here, we consider the ↵
attractor potential with c = 5 and �̃i = 3. We also showed the time evolution of �̃ (black thinner)
and Ṽ�̃�̃ (black thicker). We distinguished positive values and negative values, using solid lines for

the former and dotted lines for the latter. The right panel shows the time evolution of !2
k for k̃ = 1

(blue) and k̃ = 103/2 (red). The black dotted line shows !2
k=0 = Ṽ�̃�̃.

Figure 5 shows a typical time evolution during phase 2. Here, solving Eq. (2.17), we

showed the time evolution of '̃k for the ↵ attractor potential (2.13) with c = 5 and �̃i = 3.

For a reference, we also plotted the time evolution of the background mode, �̃ and Ṽ�̃�̃.

The three wavenumbers k̃ = 1, 103/2, 103 follow di↵erent time time evolutions. Since !2
k

for the largest wavenumber k̃ = 103 is always positive, this mode simply oscillates and the

amplitude does not grow in time. Meanwhile, !2
k takes both positive and negative values

for k̃ = 1 and k̃ = 103/2 during one oscillation of �̃. Notice that while the amplitude of

'̃k grows for k̃ = 103/2, it does not for k̃ = 1. In fact, during phase 2, the spectrum of '̃
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Instability in phase 2 Vφφ < 0
~~~ Vφφ > 0

~~~

d2

dt̃2
�k + !2

k �k = 0

Figure 3: The left panel plot shows the time evolution of  k for the ↵ attractor potential with
c = 0 and the initial condition �̃i = 3. The right panel shows the time evolution of !2

k during the
same time period.

Figure 4: These plots are same as Fig. 3 except that the parameter c is now set to 5.

p = 1/2. Since we chose xi as xi = 10�2, we can relate k̃ to k/(am) as k/(am) = k̃/(10
p
x).

We find that the fluctuation of the axion in a certain range of wavenumbers grows very

rapidly. We also showed the time evolution of !2
k, which is important to understand the

growth of the inhomogeneities. Notice that in Fig. 4, !2
k stays at the negative region longer

than in Fig. 3.

In the previous section, we divided the time evolution of �̃ into three di↵erent phases.

In the following, we will show that '̃k undergoes di↵erent types of instabilities in these

three phases, based on linear analysis. Using another variable �k ⌘ a3/2'̃k, we can rewrite

the equation of motion (2.16) as

d2

d(mt)2
�k(t) + !2

k �k(t) = 0 (2.18)

with

!2
k ⌘

✓
k

ma

◆2

+ Ṽ�̃�̃ . (2.19)

Here, we neglected the sub-dominant terms for sub Hubble modes k/(aH) � 1.
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2.3.1 Tachyonic instability: Phase 1

In this phase, the curvature of the scalar potential becomes negative, i.e., Ṽ�̃�̃ < 0. During

this period, !2
� takes a negative value for

k

am


q
|Ṽ�̃�̃| (2.20)

and these modes grow exponentially. In particular, the growth rate for the modes with

k/(am) ⌧
q
|Ṽ�̃�̃| is independent of k.

2.3.2 Flapping resonance instability: Phase 2

In this phase, the homogeneous mode of the axion, �̃ goes back and forth between the

regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0. In this phase, the time evolution of �̃ has not been

settled down to the harmonic oscillation. Because of that, the equation of motion for �k

is not expressed in the form of the Mathieu equation. When Ṽ�̃�̃ < 0, the modes which

satisfy Eq. (2.20) can grow due to the tachyonic instability. Here, we show that when the

background axion field �̃ oscillates between the regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0, the

modes (2.20) do not always grow, even when Ṽ�̃�̃ < 0.

Figure 5: The left panel shows the time evolution of  k for di↵erent wave numbers k̃ = 1 (blue),
k̃ = 103/2 (red), and k̃ = 103 (green) during radiation dominated era. Here, we consider the ↵
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Figure 3: The left panel plot shows the time evolution of  k for the ↵ attractor potential with
c = 0 and the initial condition �̃i = 3. The right panel shows the time evolution of !2

k during the
same time period.

Figure 4: These plots are same as Fig. 3 except that the parameter c is now set to 5.
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d(mt)2
�k(t) + !2

k �k(t) = 0 (2.18)

with

!2
k ⌘

✓
k

ma

◆2

+ Ṽ�̃�̃ . (2.19)

Here, we neglected the sub-dominant terms for sub Hubble modes k/(aH) � 1.
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(2.10) with c = 5 and �̃i = 3. For a reference, we also plotted the time evolution of

the background mode, �̃ and Ṽ�̃�̃. The mode functions with three di↵erent wavenumbers

k̃(⌘ k/m) = 1, 103/2, 103 follow di↵erent time evolutions. Since !2
k with k̃ = 103 is always

positive, this mode simply oscillates without tachyonic growth. Meanwhile, !2
k becomes

negative during one oscillation of �̃ for k̃ = 1 and k̃ = 103/2. Notice that, only the mode

with k̃ = 103/2 grows with time. The existence of such growing modes can be qualitatively

understood as follows.

Eq. (2.12) can be regarded as one dimensional kinematics governed by the potential1

Vk =
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k. (2.14)

The first term in the right hand side gives a linear restoring force and the second term is

periodically “flapping” due to the change of sign when the zero mode passes through the

inflection points.

Figure 4: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 4 illustrates the time evolution of 'k in the case where Vk can become negative.

The red dotted arrow denotes the (intrinsic) restoring force from the first term in (2.14)

1
For our schematic argument, we simply treat 'k as a real function.
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develops a peak at a finite wavenumber. This may be somewhat counter-intuitive, because

the tachyonic instability is more prominent for soft modes. In the following, we will show

that this can be understood based on a simple classical mechanics.

Notice that Eq. (2.18) can be understood as the equation of motion for a point particle

whose motion is determined by the potential V ⌘ !2
k �

2
k/2

1. As shown in Eq. (2.19), !2
k

is given as the summation of two terms, (k/am)2 and Ṽ�̃�̃. The former is always positive,

while the latter changes the signature at the inflection points �̃c = ±C. Therefore, we

can interpret that Eq. (2.18) describes the motion of a “point particle” with a positive

mass (k/am)2 which is also driven by a flapping potential V, whose curvature periodically

changes the signature. The mass term always drives �k towards the origin, i.e., �k = 0,

while the flapping potential force drives �k towards the origin when Ṽ�̃�̃ > 0 and away

from the origin when Ṽ�̃�̃ < 0.

Figure 6: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 6 explains the time evolution of �k with the mode k for which !2
k takes a negative

value during one oscillation of �̃, e.g., k̃ = 1 and k̃ = 103/2 among the three modes in Fig. 5.

The red dotted arrow denotes the force due to the mass term, �(k/ma)2 �k and the blue

1
The flapping resonance can be understood based on classical mechanic. Therefore, for our schematic

argument, we simply consider �k as a real function.
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(2.10) with c = 5 and �̃i = 3. For a reference, we also plotted the time evolution of

the background mode, �̃ and Ṽ�̃�̃. The mode functions with three di↵erent wavenumbers

k̃(⌘ k/m) = 1, 103/2, 103 follow di↵erent time evolutions. Since !2
k with k̃ = 103 is always

positive, this mode simply oscillates without tachyonic growth. Meanwhile, !2
k becomes

negative during one oscillation of �̃ for k̃ = 1 and k̃ = 103/2. Notice that, only the mode

with k̃ = 103/2 grows with time. The existence of such growing modes can be qualitatively

understood as follows.
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The first term in the right hand side gives a linear restoring force and the second term is

periodically “flapping” due to the change of sign when the zero mode passes through the

inflection points.

Figure 4: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 4 illustrates the time evolution of 'k in the case where Vk can become negative.

The red dotted arrow denotes the (intrinsic) restoring force from the first term in (2.14)

1
For our schematic argument, we simply treat 'k as a real function.
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Figure 6: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 6 explains the time evolution of �k with the mode k for which !2
k takes a negative

value during one oscillation of �̃, e.g., k̃ = 1 and k̃ = 103/2 among the three modes in Fig. 5.

The red dotted arrow denotes the force due to the mass term, �(k/ma)2 �k and the blue

1
The flapping resonance can be understood based on classical mechanic. Therefore, for our schematic

argument, we simply consider �k as a real function.

– 11 –

damping

damping

tachyonic instability

develops a peak at a finite wavenumber. This may be somewhat counter-intuitive, because

the tachyonic instability is more prominent for soft modes. In the following, we will show

that this can be understood based on a simple classical mechanics.

Notice that Eq. (2.18) can be understood as the equation of motion for a point particle

whose motion is determined by the potential V ⌘ !2
k �

2
k/2

1. As shown in Eq. (2.19), !2
k

is given as the summation of two terms, (k/am)2 and Ṽ�̃�̃. The former is always positive,
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+ Ṽ�̃�̃ . (2.19)

Here, we neglected the sub-dominant terms for sub Hubble modes k/(aH) � 1.
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(2.10) with c = 5 and �̃i = 3. For a reference, we also plotted the time evolution of

the background mode, �̃ and Ṽ�̃�̃. The mode functions with three di↵erent wavenumbers

k̃(⌘ k/m) = 1, 103/2, 103 follow di↵erent time evolutions. Since !2
k with k̃ = 103 is always

positive, this mode simply oscillates without tachyonic growth. Meanwhile, !2
k becomes

negative during one oscillation of �̃ for k̃ = 1 and k̃ = 103/2. Notice that, only the mode

with k̃ = 103/2 grows with time. The existence of such growing modes can be qualitatively

understood as follows.
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The first term in the right hand side gives a linear restoring force and the second term is

periodically “flapping” due to the change of sign when the zero mode passes through the

inflection points.

Figure 4: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 4 illustrates the time evolution of 'k in the case where Vk can become negative.

The red dotted arrow denotes the (intrinsic) restoring force from the first term in (2.14)

1
For our schematic argument, we simply treat 'k as a real function.
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whose motion is determined by the potential V ⌘ !2
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is given as the summation of two terms, (k/am)2 and Ṽ�̃�̃. The former is always positive,

while the latter changes the signature at the inflection points �̃c = ±C. Therefore, we

can interpret that Eq. (2.18) describes the motion of a “point particle” with a positive

mass (k/am)2 which is also driven by a flapping potential V, whose curvature periodically

changes the signature. The mass term always drives �k towards the origin, i.e., �k = 0,

while the flapping potential force drives �k towards the origin when Ṽ�̃�̃ > 0 and away

from the origin when Ṽ�̃�̃ < 0.

Figure 6: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 6 explains the time evolution of �k with the mode k for which !2
k takes a negative

value during one oscillation of �̃, e.g., k̃ = 1 and k̃ = 103/2 among the three modes in Fig. 5.

The red dotted arrow denotes the force due to the mass term, �(k/ma)2 �k and the blue
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while the latter changes the signature at the inflection points �̃c = ±C. Therefore, we

can interpret that Eq. (2.18) describes the motion of a “point particle” with a positive

mass (k/am)2 which is also driven by a flapping potential V, whose curvature periodically

changes the signature. The mass term always drives �k towards the origin, i.e., �k = 0,

while the flapping potential force drives �k towards the origin when Ṽ�̃�̃ > 0 and away
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(2.10) with c = 5 and �̃i = 3. For a reference, we also plotted the time evolution of

the background mode, �̃ and Ṽ�̃�̃. The mode functions with three di↵erent wavenumbers

k̃(⌘ k/m) = 1, 103/2, 103 follow di↵erent time evolutions. Since !2
k with k̃ = 103 is always

positive, this mode simply oscillates without tachyonic growth. Meanwhile, !2
k becomes

negative during one oscillation of �̃ for k̃ = 1 and k̃ = 103/2. Notice that, only the mode

with k̃ = 103/2 grows with time. The existence of such growing modes can be qualitatively

understood as follows.
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The first term in the right hand side gives a linear restoring force and the second term is

periodically “flapping” due to the change of sign when the zero mode passes through the

inflection points.

Figure 4: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 4 illustrates the time evolution of 'k in the case where Vk can become negative.

The red dotted arrow denotes the (intrinsic) restoring force from the first term in (2.14)
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For our schematic argument, we simply treat 'k as a real function.
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the background mode, �̃ and Ṽ�̃�̃. The mode functions with three di↵erent wavenumbers

k̃(⌘ k/m) = 1, 103/2, 103 follow di↵erent time evolutions. Since !2
k with k̃ = 103 is always

positive, this mode simply oscillates without tachyonic growth. Meanwhile, !2
k becomes

negative during one oscillation of �̃ for k̃ = 1 and k̃ = 103/2. Notice that, only the mode

with k̃ = 103/2 grows with time. The existence of such growing modes can be qualitatively

understood as follows.

Eq. (2.12) can be regarded as one dimensional kinematics governed by the potential1

Vk =
1

2

✓
k

a

◆2

'2
k + V��'

2
k. (2.14)

The first term in the right hand side gives a linear restoring force and the second term is

periodically “flapping” due to the change of sign when the zero mode passes through the

inflection points.

Figure 4: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 4 illustrates the time evolution of 'k in the case where Vk can become negative.

The red dotted arrow denotes the (intrinsic) restoring force from the first term in (2.14)

1
For our schematic argument, we simply treat 'k as a real function.

– 9 –

develops a peak at a finite wavenumber. This may be somewhat counter-intuitive, because

the tachyonic instability is more prominent for soft modes. In the following, we will show

that this can be understood based on a simple classical mechanics.

Notice that Eq. (2.18) can be understood as the equation of motion for a point particle

whose motion is determined by the potential V ⌘ !2
k �

2
k/2

1. As shown in Eq. (2.19), !2
k

is given as the summation of two terms, (k/am)2 and Ṽ�̃�̃. The former is always positive,
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while the latter changes the signature at the inflection points �̃c = ±C. Therefore, we

can interpret that Eq. (2.18) describes the motion of a “point particle” with a positive

mass (k/am)2 which is also driven by a flapping potential V, whose curvature periodically

changes the signature. The mass term always drives �k towards the origin, i.e., �k = 0,

while the flapping potential force drives �k towards the origin when Ṽ�̃�̃ > 0 and away
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Figure 6: This figure gives a schematic image on how the fluctuation grows through the flapping
resonance instability. The blue dotted arrow shows the force from the constant mass term and the
red arrow shows the force from the flapping potential. The black thicker arrow shows the velocity,
i.e., the direction of the motion, of �k.

Figure 6 explains the time evolution of �k with the mode k for which !2
k takes a negative

value during one oscillation of �̃, e.g., k̃ = 1 and k̃ = 103/2 among the three modes in Fig. 5.

The red dotted arrow denotes the force due to the mass term, �(k/ma)2 �k and the blue

1
The flapping resonance can be understood based on classical mechanic. Therefore, for our schematic

argument, we simply consider �k as a real function.
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Instability in phase 2 Vφφ < 0
~~~ Vφφ > 0

~~~

d2

dt̃2
�k + !2

k �k = 0

Figure 3: The left panel plot shows the time evolution of  k for the ↵ attractor potential with
c = 0 and the initial condition �̃i = 3. The right panel shows the time evolution of !2

k during the
same time period.

Figure 4: These plots are same as Fig. 3 except that the parameter c is now set to 5.

p = 1/2. Since we chose xi as xi = 10�2, we can relate k̃ to k/(am) as k/(am) = k̃/(10
p
x).

We find that the fluctuation of the axion in a certain range of wavenumbers grows very

rapidly. We also showed the time evolution of !2
k, which is important to understand the

growth of the inhomogeneities. Notice that in Fig. 4, !2
k stays at the negative region longer

than in Fig. 3.

In the previous section, we divided the time evolution of �̃ into three di↵erent phases.

In the following, we will show that '̃k undergoes di↵erent types of instabilities in these

three phases, based on linear analysis. Using another variable �k ⌘ a3/2'̃k, we can rewrite

the equation of motion (2.16) as

d2

d(mt)2
�k(t) + !2

k �k(t) = 0 (2.18)

with

!2
k ⌘

✓
k

ma

◆2

+ Ṽ�̃�̃ . (2.19)

Here, we neglected the sub-dominant terms for sub Hubble modes k/(aH) � 1.
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2.3.1 Tachyonic instability: Phase 1

In this phase, the curvature of the scalar potential becomes negative, i.e., Ṽ�̃�̃ < 0. During

this period, !2
� takes a negative value for

k

am


q
|Ṽ�̃�̃| (2.20)

and these modes grow exponentially. In particular, the growth rate for the modes with

k/(am) ⌧
q
|Ṽ�̃�̃| is independent of k.

2.3.2 Flapping resonance instability: Phase 2

In this phase, the homogeneous mode of the axion, �̃ goes back and forth between the

regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0. In this phase, the time evolution of �̃ has not been

settled down to the harmonic oscillation. Because of that, the equation of motion for �k

is not expressed in the form of the Mathieu equation. When Ṽ�̃�̃ < 0, the modes which

satisfy Eq. (2.20) can grow due to the tachyonic instability. Here, we show that when the

background axion field �̃ oscillates between the regions with Ṽ�̃�̃ < 0 and Ṽ�̃�̃ > 0, the

modes (2.20) do not always grow, even when Ṽ�̃�̃ < 0.

Figure 5: The left panel shows the time evolution of  k for di↵erent wave numbers k̃ = 1 (blue),
k̃ = 103/2 (red), and k̃ = 103 (green) during radiation dominated era. Here, we consider the ↵
attractor potential with c = 5 and �̃i = 3. We also showed the time evolution of �̃ (black thinner)
and Ṽ�̃�̃ (black thicker). We distinguished positive values and negative values, using solid lines for

the former and dotted lines for the latter. The right panel shows the time evolution of !2
k for k̃ = 1

(blue) and k̃ = 103/2 (red). The black dotted line shows !2
k=0 = Ṽ�̃�̃.

Figure 5 shows a typical time evolution during phase 2. Here, solving Eq. (2.17), we

showed the time evolution of '̃k for the ↵ attractor potential (2.13) with c = 5 and �̃i = 3.

For a reference, we also plotted the time evolution of the background mode, �̃ and Ṽ�̃�̃.

The three wavenumbers k̃ = 1, 103/2, 103 follow di↵erent time time evolutions. Since !2
k

for the largest wavenumber k̃ = 103 is always positive, this mode simply oscillates and the

amplitude does not grow in time. Meanwhile, !2
k takes both positive and negative values

for k̃ = 1 and k̃ = 103/2 during one oscillation of �̃. Notice that while the amplitude of

'̃k grows for k̃ = 103/2, it does not for k̃ = 1. In fact, during phase 2, the spectrum of '̃

– 10 –

}- To shorten ② , larger k

inflection point, the flapping potential immediately becomes convex. During this term,

ϕk climbs the potential hill, consuming the kinetic energy obtained in the previous stage.

Once ϕk crosses the origin, as depicted in the third layer, ϕk goes down the potential hill,

increasing the amplitude through the tachyonic instability. The tachyonic growth lasts,

until the zero mode comes within the inflection points and the curvature of Vk, given by

ω2
k, turns to be positive as in the first layer of Fig. 4. The flow of these steps repeats during

the phase 2, where Ṽφ̃φ̃ flips the signature during each oscillation of the homogeneous mode.

The key to understand the difference between the two modes k̃ = 0.1 and k̃ = 4 is

in the presence of the second layer stage, i.e., the amplitude of ϕk does not start to grow

immediately after Ṽφ̃φ̃ becomes negative. Reducing the duration of this stage leads to

a net growth, acquiring a longer time for the tachyonic growth in the third layer stage.

Notice that in the second layer stage, the potential driven force acts as a resistive force

against the motion of ϕk towards the origin, while the “permanent” restoring force, which

is proportional to (k/am)2, supports the motion towards the origin. Because of that, as

shown in Fig. 3, (the amplitude of) the mode k̃ = 4 turns to grow prior to k̃ = 0.1 after Ṽφ̃φ̃

becomes negative. For k̃ = 0.1, since the growth during the third layer stage is canceled

by the decay in the first layer and the second layer stages, there is no net growth.

We dub the instability in the phase 2, which resonates with the flapping ω2
k or Vk, the

flapping resonance instability, distinguishing it from the usual broad resonance instability

and also from the usual tachyonic instability. Unlike the usual broad resonance instability

and the tachyonic instability, the flapping resonance generates a peak at k ̸= 0 in the

spectrum. This is because the tachyonic instability takes place only for low-k modes and a

larger k mode can be enhanced in a longer time among these low-k modes. Therefore, the

peak wavenumber generated by the flapping resonance instability is roughly estimated by

the maximum wavenumber among those which undergo the tachyonic instability as

kpeak
aresm

≃
√
|Ṽ (plat)

φ̃φ̃
| , (2.12)

where we evaluated Ṽφ̃φ̃ in the plateau region, which can be reached when φ̃ climbs up the

potential Ṽ . Here, ares denotes the scale factor, when the flapping resonance takes place.

The flapping resonance generically takes place, when ω2
k repeatedly changes the sig-

nature. Therefore, when the scalar potential of the inflation satisfies the conditions i) and

ii), the flapping resonance also takes place during reheating (see also Ref. [33]). In the

early stage of reheating after small field inflation models, ω2
k flips the signature during each

oscillation of the inflaton [34]. In this case, unlike the plateau case, the inflaton starts to

oscillate around Hosc ≃ m. Then, this stage does not last long, since the inflaton exits the

tachyonic region after several oscillations due to the Hubble friction [34].

2.3.3 Narrow resonance: Phase 3

In this phase, the homogeneous mode of the axion oscillates within the inflection points.

During this phase, we can expand perturbatively the second derivative of the potential as

Ṽφ̃φ̃ = 1 +
1

2
λφ̃2 +O(φ̃4) (2.13)
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Figure 7: Evolution of the spatial average of � (red), the root-mean-square h��2
i
1/2 (green), the

energy density of the average ⇢(h�i) (blue), energy density perturbation, h�⇢2i1/2 (orange). We
have taken c = 5 (c = 2) and �i = 3f in the left (right) panel.

homogeneous mode to the inhomogeneous modes eternally continues, which is obviously not

the case. In fact, once the inhomogeneous modes becomes comparable to the homogeneous

mode after e�cient parametric amplifications, the backreaction and the rescattering turn

on and and the dynamics enters a highly non-linear regime. In this section, we address the

non-linear dynamics based on the lattice simulation.

3.1 Nonlinear dynamics of the axion

The equation of motion of the classical axion field, �(t,x), in the flat-FRW universe is

given by

�̈+ 3H�̇�
1

a2
r

2�+ V� = 0. (3.1)

For computational convenience, here we use the conformal time, ⌧ as a time variable,

defined by d⌧ = dt/a instead of the cosmic time and in order to remove the Hubble friction

term, we redefine the field variable as � = �/a. Then, the equation of motion can be

rewritten as

�00
�r

2��
a00

a
�+ a3V� = 0, (3.2)

where the prime (�0) expresses the derivative with respect to the conformal time. We have

solved the above equation by using fourth order Symplectic integrator with 2563 grids for

the ↵ attractor type potential in the radiation dominated Universe, a / ⌧ . The initial time

is set by H = m2, and the simulation box size is 2⇡m�1. The scale factor is normalized

by the initial value, a(⌧i) = 1. Note that one can normalize both time variable and spatial

coordinate by the axion mass and then the result does not depend on the axion mass.

Fig. 7 and 8 shows the evolution of the homogeneous mode, i.e. spatially-averaged field

value (red), the root-mean-squared of the field fluctuation (green), the energy density of

the homogeneous mode (blue) and the energy density fluctuation (magenta). After the

2
In the case of our interest where the onset of the oscillation is delayed significantly, the axion is still

overdamped at H = m. Thus, the value of the axion field at H = m well approximates the initial value.
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Figure 8: Same as Fig. 7 but c = 0 and �i = 3f in the left panel and c = 2 and �i = 2f in the
right panel.

(delayed) onset of the axion oscillation, the field fluctuation grows exponentially and it

eventually dominates over the homogeneous component (except for the case with c = 0

and �i = 3f). At that time, the exponential growth stops due to the backreaction from

produced nonzero modes on the coherent mode. Fig. 7 shows that, through the flapping

resonance in phase 3, the fluctuation grows quickly and saturates in a short time period.

On the other hand, Fig. 8 shows the growth due to the narrow resonance regime in phase

2. In this case, the growth rate is smaller than that of the flapping resonance and it takes

longer time for fluctuations to catch up with the zero mode.

To see the spectrum of the enhanced nonzero-mode axion, let us consider the Fourier

transformation, �k, and define the occupation number as

nk =
1

2

✓
|�0

k|
2

⌦k
+ ⌦k|�k|

2

◆
, (3.3)

where ⌦k is defined by3

⌦2
k = k2 + a2hV��i. (3.4)

Fig. 9, 10, and 11 show the spectrum of nk. Di↵erent curves represent spectra at

di↵erent time steps. In Fig. 9, 10, the peak modes grow through the flapping resonance and

in Fig. 11, the peak mode grows through the narrow resonance. When the energy density

in inhomogeneous modes becomes comparable to the one in the homogeneous mode, the

growth of the inhomogeneous modes terminates and the peaked spectrum starts to be

redistributed by rescattering. As shown by Micha and Tkachev, the turbulence drives the

momentum flow to larger wavenumbers and eventually, the spectrum settles down to the

Kolmogorov spectrum (nk / k�3/2) [17, 18]. This is e�cient especially when the narrow

resonance is the dominant instability mechanism because it leads to more sharply peaked

spectrum. Fig. 11 shows that the spectrum asymptotes to the Kolomogorov spectrum

(dotted line).

3
Practically, we set hV��i = m

2
in the numerical computation in order to avoid imaginary numbers.
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Figure 13: Evolution of the power spectrum of the density parameter of GW. Time evolves from
bottom to top in both panels. We have taken f = 1016 GeV, c = 5 and �i = 3f .

with Pij(k̂) = �ij � k̂ik̂j and k̂ = k/|k|. Using the projection operator, we obtain the

Fourier mode of the tensor perturbation as

hij(k) =
1

a
⇤ijlm(k̂)ulm(k). (4.7)

The energy density of the stochastic GW background can be rewritten in terms of the

Fourier transform,

⇢GW =
M2

Pl

4L3

Z
d3kḣij(k)ḣ

⇤
ij(k), (4.8)

where L is the size of the Universe. Finally, the spectrum of GW density parameter in

terms of the frequency, ⌫, can be calculated as

⌦GW(⌫) =
1

⇢c

d⇢GW

d ln ⌫
, (4.9)

where ⇢c denotes the total energy density, given by ⇢c = 3H2M2
Pl.

We solved Eq. (4.5) together with Eq. (3.2) in 3-dimensional lattice space with the same

setup in the previous section and calculated the spectrum using the above formula. Fig. 13

and 14 show the evolution of the spectrum of GW density parameter. They show that for

(c, �̃i) = (5, 3) and (2, 3), the peak wavenumber is around kpeak ' 10m, which is roughly

twice as large as the peak wave number of the spectrum of nk before the rescattering. We

found that the GW emission stops around a/ai ⇠ 40, which corresponds to the time of

oscillon formation as shown in the previous section. Because the axion field configuration

becomes almost spherically symmetric after the oscillon formation, GWs are no longer

emitted after that [25].

The GWs emitted from a scalar field which was located at a a plateau region has been

sometimes described as “the GWs from oscillons.” However, this is somehow misleading,

because the prominent GW emission takes place prior to the formation of the oscillons,

which are almost spherically symmetric. In fact, the e�cient GW emission stops after the

oscillons formed and the spectrum of the GWs gets decoupled from the spectrum of the

axion number density, where the momentum transfer still continues.
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Figure 13: Evolution of the power spectrum of the density parameter of GW. Time evolves from
bottom to top in both panels. We have taken f = 1016 GeV, c = 5 and �i = 3f .

with Pij(k̂) = �ij � k̂ik̂j and k̂ = k/|k|. Using the projection operator, we obtain the

Fourier mode of the tensor perturbation as

hij(k) =
1

a
⇤ijlm(k̂)ulm(k). (4.7)

The energy density of the stochastic GW background can be rewritten in terms of the

Fourier transform,

⇢GW =
M2

Pl

4L3

Z
d3kḣij(k)ḣ

⇤
ij(k), (4.8)

where L is the size of the Universe. Finally, the spectrum of GW density parameter in

terms of the frequency, ⌫, can be calculated as

⌦GW(⌫) =
1

⇢c

d⇢GW

d ln ⌫
, (4.9)

where ⇢c denotes the total energy density, given by ⇢c = 3H2M2
Pl.

We solved Eq. (4.5) together with Eq. (3.2) in 3-dimensional lattice space with the same

setup in the previous section and calculated the spectrum using the above formula. Fig. 13

and 14 show the evolution of the spectrum of GW density parameter. They show that for

(c, �̃i) = (5, 3) and (2, 3), the peak wavenumber is around kpeak ' 10m, which is roughly

twice as large as the peak wave number of the spectrum of nk before the rescattering. We

found that the GW emission stops around a/ai ⇠ 40, which corresponds to the time of

oscillon formation as shown in the previous section. Because the axion field configuration

becomes almost spherically symmetric after the oscillon formation, GWs are no longer

emitted after that [25].

The GWs emitted from a scalar field which was located at a a plateau region has been

sometimes described as “the GWs from oscillons.” However, this is somehow misleading,

because the prominent GW emission takes place prior to the formation of the oscillons,

which are almost spherically symmetric. In fact, the e�cient GW emission stops after the

oscillons formed and the spectrum of the GWs gets decoupled from the spectrum of the

axion number density, where the momentum transfer still continues.
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Figure 14: Same as Fig. 13 but c = 2 (top panels) and c = 0 (bottom panels).

4.2 Gravitational wave forest

So far, we have computed the spectra of the axion and GWs without specifying the axion

mass because the evolution equations do not depend explicitly on the axion mass if we use

dimensionless time and spatial coordinates normalized by the axion mass. However, the

frequency of the emitted GWs at present is di↵erent, depending on the axion mass. For

our convenience, let us introduce , using the peak physical frequency !phys as

 ⌘
!phys

m
=

kempeak
maem

. (4.10)

In particular, it largely depends on whether the dominant amplification process is the

flapping resonance or the narrow resonance. As discussed in the previous section, after the

rescattering becomes important, the turbulence drives the momentum flow to UV. Taking

into account those, we can express  as

 =
k(res)peak

mares
⇥

k(em)
peak/aem

k(res)peak /ares
. (4.11)

The first factor k(res)peak /(mares) can be estimated by using either Eq. (??) or Eq. (??). The

second factor (k(em)
peak/aem)/(k

(res)
peak /ares) describes the momentum flow due to the turbulence.
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Figure 14: Same as Fig. 13 but c = 2 (top panels) and c = 0 (bottom panels).

4.2 Gravitational wave forest

So far, we have computed the spectra of the axion and GWs without specifying the axion

mass because the evolution equations do not depend explicitly on the axion mass if we use

dimensionless time and spatial coordinates normalized by the axion mass. However, the

frequency of the emitted GWs at present is di↵erent, depending on the axion mass. For

our convenience, let us introduce , using the peak physical frequency !phys as

 ⌘
!phys

m
=

kempeak
maem

. (4.10)

In particular, it largely depends on whether the dominant amplification process is the

flapping resonance or the narrow resonance. As discussed in the previous section, after the

rescattering becomes important, the turbulence drives the momentum flow to UV. Taking

into account those, we can express  as

 =
k(res)peak

mares
⇥

k(em)
peak/aem

k(res)peak /ares
. (4.11)

The first factor k(res)peak /(mares) can be estimated by using either Eq. (??) or Eq. (??). The

second factor (k(em)
peak/aem)/(k

(res)
peak /ares) describes the momentum flow due to the turbulence.
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Figure 15: Predicted density spectrum of GWs (thick red lines) and sensitivity curves of SKA,
LISA, DECIGO (ultimate-DECIGO) and ET from left to right. We have taken f = 1016 GeV,
c = 5 and the axion mass is set to be m = 10�15 eV, 10�6 eV, 1 eV and 106 eV from left to right
and �i = 3 and 2 from top to bottom.

Using , the redshifted frequency of GWs today is given by

⌫0 =
m

2⇡

✓
aem
a0

◆
. (4.12)

When an axion emitted GWs during radiation domination,

⌫0 =
m

2⇡
⇥

✓
⇢r,0
⇢r, em

◆1/4

' 0.78nHz

✓
m

Hem

◆1/2 ⇣ m

10�12eV

⌘1/2
, (4.13)

where we approximated ⇢r, em as ⇢r, em ' ⇢em and used H0 = 100hkm s�1Mpc�1 = 2.13h⇥

10�33 eV, ⌦rh2 ' 2.47⇥10�5, and 1Hz = 6.58⇥10�16eV. Similarly, when an axion emitted

GWs during (late time) matter domination, we obtain

⌫0 =
m

2⇡
⇥

✓
⇢m,0

⇢m, em

◆1/3

' 2.1⇥ 10�18Hz

✓
m

Hem

◆2/3 ⇣ m

10�30eV

⌘ 1
3

(4.14)

where we approximated ⇢m, em as ⇢m, em ' ⇢em and used ⌦mh2 ' 0.14 [39].

String theory predicts axions in various mass scales. When these axions were located

at a plateau region before they start to oscillate, our discussion here predicts GW emissions

with various frequencies, dubbed Gravitational wave forest. Figure 15 shows the density

spectrum GWs from axions with di↵erent mass scales and their detectability by future

multi-band GW detectors. In Fig. 15, we chose the decay constant f as f = 1016 GeV as

is typically the case for stringy axions [43]. When we change f , ⌦GW scales as ⌦GW / f4.

Before the axion starts to oscillate, it behaves as a cosmological constant. Since the

axion should not dominate the universe during this term, this gives an upper bound on f .

When Ṽ is normalized to approach to O(1) in the limit |�̃| ! 1, we obtain

f

MP

m

Hosc
. 1 . (4.15)

– 20 –

e.g. GWs emitted during radiation domination 

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

⌦
G

W
h

2

f [Hz]

Figure 15: Predicted density spectrum of GWs (thick red lines) and sensitivity curves of SKA,
LISA, DECIGO (ultimate-DECIGO) and ET from left to right. We have taken f = 1016 GeV,
c = 5 and the axion mass is set to be m = 10�15 eV, 10�6 eV, 1 eV and 106 eV from left to right
and �i = 3 and 2 from top to bottom.
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where we approximated ⇢r, em as ⇢r, em ' ⇢em and used H0 = 100hkm s�1Mpc�1 = 2.13h⇥
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where we approximated ⇢m, em as ⇢m, em ' ⇢em and used ⌦mh2 ' 0.14 [39].

String theory predicts axions in various mass scales. When these axions were located

at a plateau region before they start to oscillate, our discussion here predicts GW emissions

with various frequencies, dubbed Gravitational wave forest. Figure 15 shows the density

spectrum GWs from axions with di↵erent mass scales and their detectability by future

multi-band GW detectors. In Fig. 15, we chose the decay constant f as f = 1016 GeV as

is typically the case for stringy axions [43]. When we change f , ⌦GW scales as ⌦GW / f4.

Before the axion starts to oscillate, it behaves as a cosmological constant. Since the

axion should not dominate the universe during this term, this gives an upper bound on f .
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Figure 10: Analytic estimation of ⌦GW in terms of the initial value of the axion field. We have
taken c = 2 and � = 1 (solid line), 0.1 (dashed line). The blue dots represents numerical results.
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Figure 11: (a) Predicted density spectrum of GW (thick red lines) and sensitivity curves of SKA,
LISA, DECIGO (ultimate-DECIGO) and ET from left to right. We have taken f = 1016 GeV,
c = 5 and the axion mass is set to be m = 10�15 eV, 10�6 eV, 1 eV and 106 eV from left to right
and �i = 3 and 2 from top to bottom. (b) Same as (a) but the present abundance of the axion is
fixed to be the dark matter abundance. The dashed lines corresponds to f = 1015 GeV.

In the context of the string axiverse, there exists various axions with wide mass range but

on the other hand the decay constant is roughly f ⇠ 1016 GeV. It predicts GWs in various

frequency range.

Fig. 11 shows the detectability by future GW detectors. Future multi-band surveys of

GWs can prove the axions with wide mass range.

4.3 Axion dark matter abundance

In general, the axion has only extremely weak interactions with the Standard Model pho-

tons and if the axion mass is small enough, it survives over the age of the Universe. In that

case, the axion contribute to the present dark matter component. After the onset of the

axion oscillation, the axion energy density divided by the entropy density is kept constant
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Figure 11: (a) Predicted density spectrum of GW (thick red lines) and sensitivity curves of SKA,
LISA, DECIGO (ultimate-DECIGO) and ET from left to right. We have taken f = 1016 GeV,
c = 5 and the axion mass is set to be m = 10�15 eV, 10�6 eV, 1 eV and 106 eV from left to right
and �i = 3 and 2 from top to bottom. (b) Same as (a) but the present abundance of the axion is
fixed to be the dark matter abundance. The dashed lines corresponds to f = 1015 GeV.

In the context of the string axiverse, there exists various axions with wide mass range but

on the other hand the decay constant is roughly f ⇠ 1016 GeV. It predicts GWs in various

frequency range.

Fig. 11 shows the detectability by future GW detectors. Future multi-band surveys of

GWs can prove the axions with wide mass range.

4.3 Axion dark matter abundance

In general, the axion has only extremely weak interactions with the Standard Model pho-

tons and if the axion mass is small enough, it survives over the age of the Universe. In that

case, the axion contribute to the present dark matter component. After the onset of the

axion oscillation, the axion energy density divided by the entropy density is kept constant
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GWs from axion DM

Crude Order estimation

 φ(t, x) ~ f (aosc/a)3/2 

3AJ�%A(���6* ���9�7�� 
��

freq. of GW f0 mass m

abundance of axion decay const. f x mass m
+

using Δ : Sym. suppression (< 1) 

formations of oscillons, which are almost spherically symmetric, |hem| is highly suppressed

by � ⌧ 1. In Eq. (4.20), we dropped the tensor indices of the GWs.

Using Eq. (4.20), the energy density of GWs at the peak wavenumber is given by

⇢GW,em '
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4
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2
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✓
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. (4.21)

Dividing this expression by the energy density of radiation at a = aem, we obtain
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Especially when the phase 2 continues long, we cannot express the potential in terms of

a single power low term �̃n. However, Eq. (4.22) is somewhat instructive. In the plateau

region and the junction region with |�̃| >⇠ 1, the potential Ṽ is shallower than �̃2. Equation

(4.22) tells us that the emitted GWs are more suppressed for n < 2, when it takes longer

until the emission of the GWs after the onset of the oscillation. This suppression can be

evaded, either in case aosc ' aem or (even if aem ⌧ aosc) in case the phase 2 finishes soon

and the axion mostly oscillates the potential region with Ṽ ' �̃2/2. However, this does not

(at least immediately) mean that a larger ⌦GW is expected when the phase 2 finishes soon,

because  and � also change depending on the potential shape and the initial condition.

For a simplistic estimation, here let us consider the case when we can approximate

the potential as Ṽ ' �̃2/2 soon after �̃ starts to oscillate. (We end up with the same

estimation, when aosc ' aem and Ṽ can be approximated as the quadratic one after the

GW emission.) Then, multiplying ⌦rh2 on Eq. (4.22) with n = 2, we obtain

⌦GWh2 '
34�2

(2⇡⌫0)2

✓
H0

h

◆2

(⌦�h
2)2 ' 0.8⇥ 10�184�2
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(⌦�h
2)2 . (4.23)

Since � < 1 and ⌦�h2  0.14, this estimation reads

⌦GWh2 < 1.6⇥ 10�16
⇣ 

10

⌘4
✓
nHz

⌫0

◆2

, (4.24)

indicating that to reach ⌦GWh2 ' 10�16 at ⌫0 =nHz,  should be larger than 10. At lower

frequencies, ⌦GW is enhanced as / 1/⌫20 . To detect GWs in this frequency range, we will

need a new window of GW detections which fills the gap between CMB and PTA obser-

vations. Figure 16 shows ⌦GW computed from the lattice simulation for the ↵ attractor

potential with c = 5 and �̃i = 2, 3, when ⌦� = ⌦m.

5. Concluding remarks

In this paper, we analyzed the dynamics of string axions whose potential has a plateau

region at large field value. After the onset of the axion oscillation, field fluctuations get

tachyonic instability due to the negative curvature near the plateau region and shows the

exponential growth. Because of the periodic but anharmonic oscillation of the background

– 22 –
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indicating that to reach ⌦GWh2 ' 10�16 at ⌫0 =nHz,  should be larger than 10. At lower

frequencies, ⌦GW is enhanced as / 1/⌫20 . To detect GWs in this frequency range, we will

need a new window of GW detections which fills the gap between CMB and PTA obser-

vations. Figure 16 shows ⌦GW computed from the lattice simulation for the ↵ attractor
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or lower frequency btwn CMB & PTAs?
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Figure 12: Snapshots of the evolution of the axion energy density in 3-dimensional lattice space.
The red, yellow and white region correspond to ⇢/⇢̄ > 2, 4 and 10 respectively with ⇢̄ being the
spatial average of the axion energy density. We have taken c = 5 and �i = 2f .

In our lattice calculation, instead of directly solving Eq. (4.4), we solve the following

evolution equation of uij ,

u00ij �r
2uij �

a00

a
uij =

2

M2
Pl

a3⇧ij , (4.5)

where ⇧ij is the source term before applying the TT projection which is given by ⇧ij =

@i�@j�. One can obtain hij by operating TT projection on uij in the Fourier space after

solving Eq. (4.5). In this way, we obtain the same solution as the one obtained by directly

solving Eq. (4.4) [33].

The TT projection can be simply defined in the Fourier space, in which the TT pro-

jection operator is given by

⇤ijlm(k̂) = Pil(k̂)Pjm(k̂)�
1

2
Pij(k̂)Plm(k̂), (4.6)
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Summery

New window of axions in plateau 

Theory side

Various instabilities for scalar fields who are initially 
located at plateau region.
Keys: Delayed oscillation, Flapping term (Phase 2) 

Phenomenology side

Predicts bGWs at various frequencies, multi-band obs.?

GWs from axion DM: sweet spot is btwn CMB & PTAs.


