25th Anniversary of the Rencontres du vietnam, Aug 5-11, 2018

Leptogenesis in Cosmological Relaxation with particle production

Minho Son

Korea Advanced Institute of Science and Technology (KAIST)

Based on SON, Fang Ye, Tevong You 1804.06599

Naturalness problem

Traditional way of softening quantum fluctuation

1. Algebraic cancellation

2. Compositeness

Problematic scalar field realized as a composite 3

Alternative to softening quantum fluctuation

List of constraints

$$\mathcal{L} = (-\Lambda^2 + g\phi)hh^+ + (g\Lambda^2\phi + g^2\phi^2 + \cdots) + g\phi\Lambda^2 + \Lambda_c^4 \cos\frac{\phi}{f}$$

$$g \sim \frac{\Lambda_c^4}{f\Lambda^2} \qquad : \text{ slope of linear potential } \sim \text{ slope of cosine potential}$$

$$H > g \qquad : \text{ Hubble friction gives slow-rolling, e.g. } \ddot{\phi} + 3H\dot{\phi} + g\phi = 0$$

$$g > \frac{H^2M_{pl}}{\Lambda^2} \qquad : \text{ slow-rolling of relaxion, e.g. } \epsilon, \eta < 1$$

$$N > \frac{H^2}{g} \qquad : \text{ E-folding from large field excursion, e.g. } \Delta\phi \ge \frac{\Lambda^2}{g}$$

$$H < \Lambda_c \qquad : \text{ Barrier forms inside the Hubble sphere, e.g. } H^{-1} > \Lambda_c^{-1}$$

$$H < (g\Lambda^2)^{1/3} \qquad : \text{ classical rolling beats quantum fluctuation, e.g. } \dot{\phi} \Delta t > H$$

$$H > \frac{\Lambda^2}{M_{pl}} \qquad : V_{inflaton} > V_{relaxion} \text{ during inflation, e.g. } H^2M_{pl}^2 > \Lambda^4$$

Last two conditions gives rise to

$$\Lambda < \left(\frac{\Lambda^4 M_{pl}^3}{f}\right)^{1/6} \sim 10^7 \ {\rm GeV} \times \left(\frac{10^9 GeV}{f} \right)^{1/6} \label{eq:ellipsi}$$

 $\mathsf{Issues} \to$

1. Super-Planckian

••••

- 2. Too large e-folding
- 3. Small scale inflation

φ

Particle Production

: dropping Hubble friction as a source of friction improves many problems in the original relaxion model

Particle production

Hook, Marques-Tavares 16'

$$\mathcal{L} = (\Lambda^2 - g\phi)hh^+ + g\phi\Lambda^2 + \frac{\phi}{f}F\tilde{F} + \Lambda_c^4\cos\frac{\phi}{f'}$$

w/ $\Lambda_c^4 \propto \text{const}$

Particle production

Hook, Marques-Tavares 16'

$$\mathcal{L} = (\Lambda^2 - g\phi)hh^+ + g\phi\Lambda^2 + \frac{\phi}{f}F\tilde{F} + \Lambda_c^4\cos\frac{\phi}{f'}$$

We consider relaxation after inflation

Inflation

Inflation can provide the initial condition for $\dot{\phi}$ for the era of the relaxation

Relaxation

needs

 $T\,\approx\,0$ era for scanning over zero-T Higgs mass

needs initial condition to start scanning

arXiv:1805.04543 for a detailed discussion

Reheating-era Leptogenesis

$$\mathcal{L} = \mathcal{L}_{SM-\phi} + \frac{1}{\Lambda_6^2} \lambda_{6,ijkl} (\overline{L}_i \gamma^{\mu} L_j) (\overline{e}_i \gamma_{\mu} e_j) + \frac{1}{\Lambda_7^3} \lambda_{7,i} L_i h \overline{e}_i^{\ c} \ \overline{u}^c d^c$$

 $\rightarrow \text{ Negligible neutrino mass}$
 $\rightarrow \text{ Other dim-7 ops are also possible}$
 $E.g. (H^{\dagger} D^{\mu} \widetilde{H}) (\overline{e}_i \gamma_{\mu} H^{\dagger} l_j)$

Loop-induced CP violating process via dimension-6, 7 operators

Unification of

Relaxation

(naturalness problem)

+ Reheating-era Leptogenesis

(matter-anti-matter asym)

: two problems are explained within an EFT with the same cutoff scale in such a way that all ingredients for leptogenesis are provided from the relaxation

Thermal leptons

Out-of-equilibrium leptons

Min, SON, Suh, arXiv:1808.00939

1. Fermion production (in progress)

May produce non-thermal leptons. How large?

2. Misalignment condensate

Condensates tend to be depleted via scattering than decaying to non-thermal leptons

Ratio of non-thermal leptons to depletion-rate

$$\sim \frac{\Gamma_{\phi \to e^+ e^-}}{\Gamma_{\phi_{\rm depl}}} \sim \frac{m_\phi^2}{T^2}$$

Non-thermal leptons would have energies E ~ $\left[\frac{m_{\phi}}{2}, \mathcal{O}(T)\right]$

3. keep #(non-thermal lepton) as free parameters to cover a broad possibility

$$\frac{\Lambda_c^4}{m_{\phi}} \left(\frac{m_{\phi}}{T}\right)^2 \lesssim n'_{\phi} \lesssim n_{\phi}$$

From misalignment condensate

Benchmark points for two sources of out-ofequilibrium leptons

2. Misalignment condensate

	$\Lambda, \Lambda_c, \Lambda_{6,7}, T$	f_p	m_{ϕ}	f_L	f_V	g
$p_{ m max}^2$	10^{5}	10^{8}	100	10^7	5×10^7	10^{-8}
p_{\min}^2	10^{5}	5×10^6	2×10^3	10^{9}	5×10^7	10^{-8}

w/
$$6mT \sim p_{min}^2 < p^2 < p_{max}^2 \sim T^2$$

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{B}{10^{-2}}\right) \left(\frac{T}{10^5 \text{ GeV}}\right)^3 \left(\frac{m_\phi}{100 \text{ GeV}}\right) \left(\frac{\Lambda_c}{10^5 \text{ GeV}}\right)^4 \left(\frac{10^5 \text{ GeV}}{\Lambda_7}\right)^6 \left(\frac{10^5 \text{ GeV}}{\Lambda_6}\right)^2$$

3. keep #(non-thermal lepton) as free parameters to cover a broad possibility

	$\Lambda, \Lambda_c, \Lambda_6, T$	Λ_7	f_p	m_{ϕ}	f_L, f_V	g	
$p_{ m max}^2$	10^{5}	10 ⁷	5×10^{11}	0.02	5×10^7	10^{-8}	
p_{\min}^2	5×10^6	10^{7}	4×10^9	6×10^3	2×10^{11}	10^{-5}	

$$\frac{n_B}{s} \sim 10^{-10} \left(\frac{B}{1}\right) \left(\frac{T}{10^5 \text{ GeV}}\right)^8 \left(\frac{n_\phi/s}{4 \times 10^5}\right) \left(\frac{10^7 \text{ GeV}}{\Lambda_7}\right)^6 \left(\frac{10^5 \text{ GeV}}{\Lambda_6}\right)^2$$

Summary

- Naturalness problem and Matter-anti-Matter asymmetry are two big problems in High energy physics. These two problems might be solved by the same New Physics.
- □ We provided a proof-of-concept example in the context of leptogenesis in cosmological relaxation scenario.

Thanks!