From high-energy to low-energy cosmic rays: mind the gap !

Thierry Montmerle Institut d'Astrophysique de Paris, France

(with Cecilia Ceccarelli & Pierre Hily-Brant, IPAG, Grenoble,

Stefano Gabici, APC, Paris)

Trifid nebula (M20)

W28 SNR

- I. Cosmic Rays today (in a nutshell)
- 2. Importance of low-energy cosmic rays
- 3. Bridging the gap ? New mysteries
- 4. Conclusions and open issues

I. Cosmic Rays today (in a nutshell)

QuiNhon (6/8/18) 3

(Swordy 2001)

Various proposed low-energy CR spectra

Indriolo+ 2009

(Swordy 2001)

High-Energy CR in the Galaxy: Proof from γ -rays ?

- High-energy cosmic rays (HECR= > 10 GeV CR: p, α, e⁻) are traced by high-energy γ-rays (> GeV) when they interact with the interstellar medium (ISM: matter + ambient photons)
 - π° decay (p, α + H, He) (Hayakawa 1954)
 - Inverse Compton (e^- + hv)
 - Bremsstrahlung ($e^- + Z$)
- As a result, γ-ray emission is expected from throughout the Galaxy (diffuse emission)
- Also, a γ-ray "source" may be associated with a localized CR source (e.g., a Supernova Remnant), with other consequences (ionization of molecular clouds, contamination by radioactive products....)

 π° decay dominant mechanism (except in some localized regions)

2nd Fermi catalog (2009)

The Milky Way in Molecular Clouds

Dame et al. 2002

=> Large-scale HECR density ~ cst throughout the Galaxy

present-day γ -ray astronomy from space: Fermi (\gtrsim 100 MeV – 20 GeV)

Higher γ -ray energies: Čerenkov telescopes on the ground (>TeV)

$\Delta E \sim 0.1-100 \text{ TeV}$ $\Delta \theta \sim 0.1^{\circ} \sim \text{mol. cloud} @ 2-3 \text{ kpc}$

HESS II (Namibia): High-Energy Stereoscopic System (future: CTA)

HESS galactic plane survey 2013 (TeV γ-rays)

HESS galactic plane survey 2013 (TeV γ-rays)

Origin of (galactic) cosmic rays

- Many possible sources
- Galactic CR: Role of supernovae
 - high-speed shocks (~10⁴-100 km/s)
 - energetics OK (~ 10% of CR energy density $\approx 0.1 \text{ eV/cm}^3$)
- Pulsars (= highly magnetized neutron stars)
- Acceleration mechanisms
 - Sun & highly magnetized media: magnetic reconnection
 - Interplanetary/interstellar shocks: "diffusive shock acceleration" (DSA) in *magnetized interstellar medium* ("Fermi mechanism")

Diffusive Shock Acceleration

Due to scattering, CR recrosses shock many times Gains energy at each crossing

(after Bell 2011)

2. Importance of low-energy cosmic rays in the Galaxy

QuiNhon (6/8/18) 15

Low-energy cosmic rays (LECR)

- Traditionally unknown spectrum and flux
 - solar modulation: $E_{CR} < I \text{ GeV/n}$
 - But new: "Local Interstellar Spectra": Voyager I (Cummings et al. 2016),
 - + propagation, etc. (Orlando 2017, Tatischeff+ 2018...)
- Tracing the first steps of (shock) acceleration ?
 - e.g., vicinity of SNRs
- Important feedback effects on (local) environment (e.g., molecular cloud chemistry; + electrons)
- Role in star formation (coupling "neutral" matter with ISM magnetic field)
 - => ionization rate ζ, units 10^{-17} s⁻¹ ("Spitzer rate")
- => galactic distribution (from MC): new Voyager I data do not explain the observed rates !

Ionization rate measurements (see later): Diffuse vs. Dense Clouds

Diffuse clouds: ζ≈0.5-3 x10⁻¹⁶s⁻¹ Dense clouds: ζ≈0.1-5 x10⁻¹⁷s⁻¹

Voyager I @ 40 !

- Launched Sep.5, 1977
- Reached interstellar space (= beyond heliosphere) in Aug.
 2012
- Engines re-started Dec. I, 2017 to re-orient the antennas
- Now at 140 au from the Sun !

3. Bridging the gap ?

QuiNhon (6/8/18) 21

=> In the Galaxy: Search for low-energy CR where evidence for high HECR

• GeV-TeV CR: γ -ray emission [γ energy $\sim 10\%$ lower than parent CR]

... by measuring and mapping the *ionization rate* ζ of selected molecular clouds (fiducial value $\zeta_0 \sim 10^{-17} \text{ s}^{-1}$ for the Galaxy: "Spitzer" rate; ionization fraction ~ 10⁻⁷)

Chemical reactions network: Molecules... and radicals

#	ŀ	(eactio	n	Reaction rates (cm ³ .s ⁻¹)
Reduced network		,		
(#1)	$CR + H_2$	$\xrightarrow{\varsigma}$	$H_{2}^{+} + e^{-}$	ζ (s ⁻¹)
(#2)	$H_2^+ + H_2$	\rightarrow	$H_3^+ + H$	$k_{\rm H_2^+} = 2.1 \ 10^{-9}$
(#3)	H ₂ D ⁺ - CO	<u>×</u> ₽	$DCO^+ + H_2$	$k_D = 5.37 \ 10^{-10}$
(#4)	H ₃ + CO	$\stackrel{k_{\mathcal{H}}}{\rightarrow}$	$HCO^+ + H_2$	$k_H = 1.61 \ 10^{-9}$
(#5)	$H_3^+ + HD$	$\stackrel{k_f}{\rightleftharpoons}_{k_f}$	$H_2D^+ + H_2$	$k_f = 1.7 \ 10^{-9}$
				$k_f^{-1} = 1.7 \ 10^{-9} \exp(-220/T)$
(#6)	$DCO^+ + e^-$	$\xrightarrow{\beta'}$	CO+D	$eta' = 2.8 10^{-7} (T/300)^{-0.69}$
(#7)	HCO^++e^-	$\xrightarrow{\beta'}$	CO+H	$eta' = 2.8 10^{-7} (T/300)^{-0.69}$
(#8)	$H_2D^+ + e^-$	$\xrightarrow{k_c}$	$\begin{array}{l} H + H + D \\ H_2 + D \\ HD + H \end{array}$	$k_e = 6.00 \ 10^{-8} (T/300)^{-0.50}$
(#9)	H_3^+ +e ⁻	$\xrightarrow{\beta}$	H+ H+ H H ₂ +H	$\beta = 6.7 \ 10^{-8} (T/300)^{-0.69}$
(#10)	H + H	$\xrightarrow{k'}$	H_2	$k' = 4.95 \ 10^{-17} (T/300)^{0.50}$
(#11)	H + D	$\stackrel{k''}{\rightarrow}$	HD	$k'' = \sqrt{2}k'$
Additional reactions				
(#12)	$H_2D^+ + CO$	$\stackrel{k'_D}{\rightarrow}$	$HCO^+ + H_2$	$k'_D = 1.1 \ 10^{-9}$
(#13)	$CO^+ + HD$	$\stackrel{k_{CQ^+}}{\rightarrow}$	$DCO^+ + H$	$k_{\rm CO^+} = 7.5 \ 10^{-10}$

["astrochem" network]

Case study: W28 (~ galactic plane, not far from GC)

X-ray, "filled" SNR CGRO and HESS γ-ray source

d ~ 2-3 kpc D ≈ 20 pc Age ~ 35-150,000 yrs

CHANDRA X-RAY

Aharonian et al.: Associated VHE and CO emission in the W 28 field

Case study: W28 SNR+SFR, complex of GeV/TeV sources d ~ 1.9 kpc age ~10⁴ yr

Aharonian et al. 2008

ÅP.

IRAM 30-m observations of W28: near and far from the shock

W28: Enhanced ionization (x \sim 100) downstream of the shock

⇔ enhancement of LECR

 \approx enhancement of *local* HECR from π° -decay γ -rays

>> enhancement of galactic HECR from π° -decay γ -rays

New mystery: "The ionization problem"

- Recent work by Cummings et al. (2016) and Phan et al. (2018), taking into account the "local" interstellar LECR measurements ("Local Interstellar Spectrum", LIS: Voyager I), have shown that if the LIS is identical throughout the Galaxy, it is impossible to explain the observed ionization rate of molecular clouds (≥ 1-2 orders of magnitude too low)
- Phan et al. (2018) proposed a new, detailed model for the penetration of LECR into molecular clouds (with advection, diffusion, energy losses, magnetic turbulence, etc.) and give the resulting (reduced) ionization rates (p + e)
- => Counterexamples ? See W28
- => or invoke very-low energy "suprathermal" CR (< 3 MeV/n) ?

4 V. H. M. Phan et al. (2018)

Figure 3. Data of the CR intensity for protons (left) and electrons (right) taken from Voyager 1 (Cummings et al. 2016) and AMS-02 (Aguilar et al. 2014, 2015) compared with the fitted curve used in this work.

Fit: broken power-law CR spectrum (3 MeV – 100 GeV)

ISM ionization by GCR: fact. >10 too low !

points are from Caselli et al. (1998) (blue filled circles), Williams et al. (1998) (blue empty triangle), Maret & Bergin (2007) (purple asterisk), and Indriolo & McCall (2012) (black filled squares are data points while yellow filled inverted triangles are upper limits).

LECR penetration limited by MHD effects in diffuse envelope

W28: Enhanced ionization (x \sim 100) downstream of the shock

 enhancement of local LECR (= near SNR shock) But ~ "Voyager value" far from the shock !?

4. Conclusions & open issues

QuiNhon (6/8/18) 34

- Origin of cosmic rays still a puzzle, in spite (or because) of recent advances
- For galactic cosmic rays, supernova remnants interacting with molecular clouds are a good laboratory for studying hadron acceleration
 - via γ -rays at high energies (down to ~ 280 MeV, π° -decay threshold)
 - via mm observations+astrochemistry at low energies (molecular cloud ionization)
- However, Voyager I results pose a new challenge: where are the low-energy cosmic rays necessary for ISM ionization ?

New approach: LECR (>10-20 MeV) nuclear interactions with the low-density ISM => γ-ray lines(< 10 MeV)

- Spallation reactions in general ISM (=> Li Be B; MAR1971)
 - depends on propagation; integrated over time
 - 6 Li/⁷Li ratio: = 12.2 for solar system, ~ 2 by GCR*
- Direct detection ?
 - nuclear γ -ray lines: α (CR) + α (ISM) \rightarrow ⁶Li^{*}, ⁷Li^{*}, ⁷Be^{*}
 - $^7\text{Be}^* \rightarrow ^7\text{Li}^* + \gamma \text{ (431 keV)}$
 - $^{7}\text{Li}^{*} \rightarrow ~^{7}\text{Li} + \gamma \text{ (470 keV)}$
 - ⁶Li* (3.56 MeV), ⁴He* (27.4 MeV)
 - in molecular clouds ?? (cf., e.g., Tatischeff+ 2012, 2018)
- − Other: α (CR) + CNO (ISM) \rightarrow ⁵⁶Fe, ²⁴Mg, ²⁰Ne, ¹²C, ¹⁶O...

Predicted nuclear γ -lines towards the center of the Galaxy

Proposed satellite experiment to detect nuclear γ-lines (among other goals): eAstrogam

Figure 1: Point source continuum differential sensitivity of different X- and γ -ray instruments. The curves for *INTEGRAL*/JEM-X, IBIS (ISGRI and PICsIT), and SPI are for an effective observation time $T_{obs} = 1$ Ms. The COMPTEL and EGRET sensitivities are given for the typical observation time accumulated during the ~9 years of the *CGRO* mission (see Fig. 1 in Ref.²). The *Fermi*/LAT sensitivity is for a high Galactic latitude source in 10 years of observation in survey mode. For MAGIC, VERITAS (sensitivity of H.E.S.S. is similar), and CTA, the sensitivities are given for $T_{obs} = 50$ hours. For HAWC $T_{obs} = 5$ yr, for LHAASO $T_{obs} = 1$ yr, and for HiSCORE $T_{obs} = 1000$ h. The e-ASTROGAM sensitivity is calculated at 3σ for an effective exposure of 1 year and for a source at high Galactic latitude. (Tatischeff+ 2018)

eAstrogam basics

Figure 4: (a) Representative topologies for a Compton event and for a pair event. Photon tracks are shown in pale blue, dashed, and electron and/or positron tracks are in red, solid. (b) Overview of the e-ASTROGAM payload.

(Tatischeff+ 2018)

