Highlights from the Pierre Auger Observatory

Marcus Niechciol¹ on behalf of the Pierre Auger Collaboration²

¹Department Physik, Universität Siegen, Siegen, Germany ²Observatorio Pierre Auger, Malargüe, Argentina

25th Anniversary of the Rencontres du Vietnam Windows on the Universe 2018 (Quy Nhon, 07.08.2018)

Outline

• Introduction

- Ultra-high-energy cosmic rays
- Pierre Auger Observatory

• Current results

- Energy spectrum
- Composition
- Anisotropy

• Perspectives

AugerPrime

Outline

• Introduction

- Ultra-high-energy cosmic rays
- Pierre Auger Observatory

• Current results

- Energy spectrum
- Composition
- Anisotropy

• Perspectives

AugerPrime

Cosmic rays

Cosmic rays

Pierre Auger Observatory (I)

General

- Located near Malargüe, Argentina; latitude 35.2 °S, longitude 69.3 °W
- Start of data taking: 2004

• Surface detector (SD)

- 1600 water Cherenkov detectors
- 1500 m distance, area: 3000 km²
- $E > 10^{18.5} \text{ eV}$
- ~100 % duty cycle
- Fluorescence detector (FD)
 - 4 stations with 6 telescopes each
 - Field of view per telescope: 0-30° elevation, 30° azimuth
 - $E > 10^{18} \text{ eV}$
 - 13 % duty cycle

[The Pierre Auger Collaboration, NIM A 798 (2015) 172-213]

Pierre Auger Observatory (II)

• Infilled array

- 60 additional water Cherenkov detectors
- 750 m distance, area: 24 km²
- $E > 10^{17.5} \text{ eV}$

• HEAT

- 3 additional fluorescence telescopes
- Tilted field of view: 30-60° elevation
- $E > 10^{17} \text{ eV}$

• AERA

- 124 radio stations
- Different distances, area 17 km²
- Measurement of the radio signals emitted by air showers (frequencies 30-80 MHz)

[The Pierre Auger Collaboration, NIM A 798 (2015) 172-213]

Hybrid concept (I)

Hybrid concept (II)

07.08.2018

Outline

• Introduction

- Ultra-high-energy cosmic rays
- Pierre Auger Observatory
- Current results
 - Energy spectrum
 - Composition
 - Anisotropy
- Perspectives
 - AugerPrime

Energy spectrum (I)

- of the energy spectrum of UHECRs over three
- Precise reconstruction of the energy spectrum of UHECRs over three decades in energy
 - 4 datasets: FD (Hybrid), SD 750 m, SD 1500 m (0-60°), SD 1500 m (60-80°)
 - ~300.000 events, ~70.000 km² sr yr exposure, -90°...+45° covered in δ

Good agreement of the individual spectra within the uncertainties:
 → Combined spectrum

[[]F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

Energy spectrum (II)

[F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

•

Energy spectrum (III)

[F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

Composition: X_{max} distributions

07.08.2018

Composition: $\langle X_{max} \rangle$ and $\sigma(X_{max})$

• Determine $\langle X_{max} \rangle$ and $\sigma(X_{max})$ from the unbiased distributions

- Elongation rate (79±1)gcm⁻² decade⁻¹ below ~10^{18.3} eV, (26±2)gcm⁻² decade⁻¹ above
 - ~60 g cm⁻² decade⁻¹ expected for constant composition

[]. Bellido for the Pierre Auger Collaboration, PoS(ICRC2017)506]

Composition: $\langle lnA \rangle$ and $\sigma^2(lnA)$

- Calculate (InA) and σ²(InA) from (X_{max}) and σ(X_{max}) using current hadronic interaction models
 - Same trend for all models: composition gets lighter until ~10^{18.3} eV, then heavier again

• Results also serve as a test of the hadronic interaction models [J. Bellido for the Pierre Auger Collaboration, PoS(ICRC2017)506]

Composition: correlation

- Study the correlation between X_{max} and S_{1000} for 18.5 < log₁₀(E[eV]) < 19.0
 - Correlation coefficient ~0: "pure" composition (e.g. 100 % p or 100% Fe)
 - Correlation coefficient < 0: mixed composition
 - Expectation robust against uncertainties in the hadronic interaction models

- Data: significantly negative correlation
 → mixed composition
- Mixture of only protons and Helium not sufficient to explain the data, also heavier nuclei are necessary

Search for UHE photons

- Stringent limits on the diffuse flux of UHE photons
 - Exotic models strongly constrained
 - Predictions of some cosmogenic models are within reach
- Targeted search for sources of UHE photons
 - No evidence for EeV photon emitters in any of the studied source classes (e.g. pulsars, X-ray binaries...)
 - Connection to H.E.S.S. measurements of the Galactic Center in the TeV regime

Search for UHE neutrinos

- Limits on the diffuse flux of UHE neutrinos allow for constraints on cosmogenic neutrino source models
 - Pure-proton models with strong source evolution are excluded

Diffuse flux neutrino model	Expected events			
	(1 Jan 04 - 31 Mar 17)			
Cosmogenic - proton - strong source evolutio	n			
Cosmogenic - proton, FRII evol. (Kampert 2012)	~ 5.2			
Cosmogenic - proton, FRII evol. (Kotera 2010)	~ 9.2			
Cosmogenic - proton - moderate source evolution				
Cosmogenic - proton, SFR evol (Aloisio 2015)	~ 2.0			
Cosmogenic - proton, SFR evol, $E_{\text{max}} = 10^{21} \text{ eV}$ (Kotera 2010)	~ 1.8			
Cosmogenic - proton, SFR evol. (Kampert 2012)	~ 1.2			
Cosmogenic - proton, GRB evol. (Kotera 2010)	~ 1.5			
Cosmogenic - proton - normalized to Fermi-LAT GeV γ -rays				
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{19} \text{ eV}$ (Ahlers 2010)	~ 4.0			
Cosmogenic - proton, Fermi-LAT, $E_{\min} = 10^{17.5}$ eV (Ahlers 2010)	~ 2.1			
Cosmogenic - mixed and iron				
Cosmogenic - mixed (Galactic) UHECR composition (Kotera 2010)	~ 0.7			
Cosmogenic - iron, FRII (Kampert 2012)	~ 0.35			
Astrophysical sources				
Astrophysical - radio-loud AGN (Murase 2014)	~ 2.6			
Astrophysical - Pulsars - SFR evol. (Fang 2014)	~ 1.3			
	·			

EXCLUDED (> 90% CL), **DISFAVORED** (85% < CL < 90%), **ALLOWED**

[E. Zas for the Pierre Auger Collaboration, PoS(ICRC2017)972]

Multimessenger astronomy (I)

- Searches for neutrinos in association with gravitational wave events detected by LIGO and Virgo
 - Discussed here: GW170817 (binary neutron star merger)
 - 2 s later detection of a gamma-ray burst (GRB170817A) by Fermi GBM and INTEGRAL
 - Follow-up observations by many observatories and instruments; searches for associated neutrinos by IceCube, Antares and Auger

Multimessenger astronomy (II)

- Searches for neutrinos in association with gravitational wave events detected by LIGO and Virgo
 - Discussed here: GW170817 (binary neutron star merger)
 - 2s later detection of a gamma-ray burst (GRB170817A) by Fermi GBM and INTEGRAL
 - Follow-up observations by many observatories and instruments; searches for associated neutrinos by IceCube, Antares and Auger
 GW170817 Neutrino limits (fluence per flavor: ν_x + ν̄_x)

Intermediate-scale anisotropy (I)

- Compare the arrival directions of UHECRs with the expected flux pattern from two catalogs of extragalactic γ-ray emitters
 - γ -ray-detected Active Galactic Nuclei (γ AGN) from the 2FHL catalog, 17 radio-loud objects within 250 Mpc (mainly BL-Lac-type blazars and FR-I-type radio galaxies), use Φ (>50 GeV) as proxy for the UHECR flux
 - Starburst Galaxies (SBG) from a Fermi-LAT search list, select the 23 brightest objects within 250 Mpc, use $\Phi(>1.4 \text{ GHz})$ as proxy for the UHECR flux
- Likelihood ratio analysis as test statistics for deviation from isotropy
 - **2 free parameters:** search radius ψ , anisotropic fraction f
 - Null hypothesis: isotropy; hypothesis under test: $(1-f) \times isotropy + f \times flux$ map from catalog

Intermediate-scale anisotropy (II)

- Isotropy at intermediate angular scales disfavored at the 4σ level for the comparison with the SBG catalog
- Results indicative of an excess of events from strong, nearby sources

Model Excess Map - Starburst galaxies - E > 39 EeV

Observed Excess Map - E > 60 Eev

Model Excess Map - Active galactic nuclei - E > 60 EeV

07.08.2018

Marcus Niechciol | 14th Rencontres du Vietnam - Windows on the Universe 2018 (Quy Nhon)

UNIVERSITÄT

Large-scale anisotropy (I)

- **Rayleigh analysis** of the first harmonic in right ascension α
 - ~114,000 events with E > 4 EeV and $\theta < 80^\circ$, declination range -90° < $\delta < 45^\circ$ (85% sky coverage); 2 energy bins (4-8 EeV, > 8 EeV)

$a_lpha = rac{2}{\mathcal{N}} \sum_{i=1}^N w_i \cos lpha_i$	Energy (EeV)	Number of events	Fourier coefficient a_{α}	Fourier coefficient b_{α}	Amplitude r_{α}	Phase φ _α (°)	Probability P (≥ r _α)	$r_lpha=\sqrt{a_lpha^2+b_lpha^2}$
$b_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \sin \alpha_i$	4 to 8	81,701	0.001 ± 0.005	0.005 ± 0.005	0.005 +0.006 -0.002	80 ± 60	0.60	$tan co = b_{\alpha}$
$\mathcal{N} \xrightarrow[i=1]{} \mathcal{N}$	≥8	32,187	-0.008 ± 0.008	0.046 ± 0.008	0.047 +0.008 -0.007	100 ± 10	2.6×10^{-8}	$\tan \varphi_{\alpha} = \frac{1}{a_{\alpha}}$

• Above 8 EeV: significant modulation at a level of 5.2σ (5.6 σ before penalization)

[The Pierre Auger Collaboration, Science 357 (2017) 1266]

Large-scale anisotropy (II)

• Reconstruction of the dipole structure:

Energy	Dipole	Dipole	Dipole	Dipole	Dipole right
(EeV)	component d_z	component d_{\perp}	amplitude d	declination δ_d (°)	ascension α_{d} (°)
≥8	-0.026 ± 0.015	$0.060\substack{+0.011\\-0.010}$	$0.065\substack{+0.013\\-0.009}$	-24_{-13}^{+12}	100 ± 10

- Dipole structure is **expected** if cosmic rays diffuse to the Galaxy from sources distributed similar to **nearby galaxies** (take e.g. the **2MRS catalog**)
 - Deflection of the dipole pattern due to the Galactic magnetic field
- Strong indication for an extragalactic origin of UHECR above 8 EeV

[The Pierre Auger Collaboration, Science 357 (2017) 1266]

Outline

• Introduction

- Ultra-high-energy cosmic rays
- Pierre Auger Observatory

• Current results

- Energy spectrum
- Composition
- Anisotropy
- Perspectives
 - AugerPrime

Motivation for AugerPrime

- **Complex and unexpected picture of UHECR** is emerging from the data
 - Suppression of the flux of cosmic rays at the highest energies firmly established,
 ...but the origin of the suppression not yet clear (propagation effect? maximum energy at the source? both?)
 - \$\langle X_{max} \rangle\$ data indicate a light (and mixed) composition around the ankle and a heavier composition towards the highest energies,
 ...but the detailed interpretation of the data is currently limited by uncertainties in the hadronic interaction models
 - We start seeing anisotropies in the arrival directions (observation of a large-scale dipole structure, indications for anisotropy at intermediate scales)
 ...but is there a rigidity-dependence?
- Open questions cannot be answered with only more statistics
 - An upgraded detector is needed, in particular an improved measurement of the muonic shower component to increase the composition sensitivity, with a duty cycle of ~100 % → AugerPrime

AugerPrime (I)

- Main part of the upgrade: equip every water Cherenkov detector (WCD) with an additional scintillation counter (Scintillation Surface Detector, SSD)
 - Exploit the different response of the two detectors to the electromagnetic and muonic shower components to disentangle the components

• Moreover:

Improved (faster) electronics Additional (small) PMT for increased dynamic range

- Extension of the FD duty cycle
- Dedicated (buried) muon counters in the 750 m array for cross-checks (AMIGA)

[The Pierre Auger Collaboration, arXiv:1604.03637]

07.08.2018

AugerPrime (II)

- September 2016: deployment of an SSD Engineering Array (12 stations)
 - Since then data taking and first data analysis
- 2018: Design finalized and tested, large-scale production of SSDs started
 - Deployment of the SSDs in the full SD array in 2018-2019
- Data taking until 2025 (exposure ~40.000 km² sr yr)

Deployment of 5-10 SSDs per day

[The Pierre Auger Collaboration, arXiv:1604.03637]

- The Pierre Auger Observatory has been successfully taking data since almost 15 years
- Key results
 - Precise measurement of the energy spectrum above ~10¹⁷ eV: flux suppression above 40 EeV firmly established
 - Composition: measurements of $\langle X_{max} \rangle$ over 3 orders of magnitude in energy; evidence for a mixed composition around the ankle
 - Anisotropy: observation of a dipole structure above 8 EeV, indications of an intermediatescale anisotropy
 -and a lot more!
- Results led to new (and unexpected) questions about UHECR
 - To answer them, an extensive upgrade program (AugerPrime) has been started
 - Exciting times ahead!

Backup

SD and FD

[C. Peters]

07.08.2018

AMIGA

[The Pierre Auger Collaboration, JINST 11 (2016) P02012]

07.08.2018

Atmospheric monitoring

[C. Peters]

07.08.2018

Energy calibration

	$SD \ 1500 < 60^{\circ}$	$SD \ 1500 > 60^{\circ}$	SD 750	Hybrid	
Data taking period	Jan. 2004 – Dec. 2016	Jan. 2004 – Dec. 2016	Aug. 2008 – Dec. 2016	Jan. 2007 – Dec 2015	
Exposure [km ² sr yr]	51,588	15,121	228	1946 @10 ¹⁹ eV	
Number of events	183,332	19,602	87,402	11,680	
Zenith angle range [deg.]	0–60	60-80	0–55	0–60	
Energy threshold [eV]	3×10^{18}	4×10^{18}	3×10^{17}	10 ¹⁸	
Calibration parameters					
Number of events	2661	312	1276		
A [eV]	$(1.78 \pm 0.03) \times 10^{17}$	$(5.45 \pm 0.08) \times 10^{18}$	$(1.4 \pm 0.04) \times 10^{16}$		
В	1.042 ± 0.005	1.030 ± 0.018	1.000 ± 0.008		
Energy resolution [%]	15	17	13		

$$E_{FD} = A \hat{S}^{B}$$

 $\hat{S} = S_{38}, S_{35}, N_{19}$

[F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

Systematic uncertainties on the energy scale				
Absolute fluorescence yield	3.4%			
Fluor. spectrum and quenching param.	1.1%			
Sub total (Fluorescence yield - sec. 2)	3.6%			
Aerosol optical depth	3%÷6%			
Aerosol phase function	1%			
Wavelength depend. of aerosol scatt.	0.5%			
Atmospheric density profile	1%			
Sub total (Atmosphere - sec. 3)	3.4%÷6.2%			
Absolute FD calibration	9%			
Nightly relative calibration	2%			
Optical efficiency	3.5%			
Sub total (FD calibration - sec. 4)	9.9%			
Folding with point spread function	5%			
Multiple scattering model	1%			
Simulation bias	2%			
Constraints in the Gaisser-Hillas fit	$3.5\% \div 1\%$			
Sub total (FD profile rec sec. 5)	6.5% ÷5.6%			
Invisible energy (sec. 6)	3%÷1.5%			
Stat. error of the SD calib. fit (sec. 7)	0.7%÷1.8%			
Stability of the energy scale (sec. 7)	5%			
Total	14%			

[V. Verzi for the Pierre Auger Collaboration, ICRC 2013]

Declination dependence

[F. Fenu for the Pierre Auger Collaboration, PoS(ICRC2017)486]

07.08.2018

$X_{\rm max}$ resolution and systematics

[J. Bellido for the Pierre Auger Collaboration, PoS(ICRC2017)506]

07.08.2018

Combined fit

- Simultaneous fit of a simplified scenario to the spectrum and X_{max} data
 - One-dimensional propagation, homogeneous distribution of identical sources of protons, Helium, Nitrogen, Silicon and Iron
 - Injection spectrum at the source: **power law with cut-off in rigidity**
 - Model dependence: propagation code, cross-sections, EBL models...
 - **Reference model:** SimProp, PSB cross-sections, Gilmore 2012 EBL, EPOS LHC
 - Scan in the spectral index γ and the cut-off rigidity R_{cut} for the reference model

Combined fit: EGMF (I)

- Include the extragalactic magnetic field in the combined fit
 - 4D propagation using CRPropa3 instead of SimProp 1D
 - Use large-scale structure following Dolag 2012 for the source distribution
 - Results for a single model (CRPropa3, TALYS cross sections, Gilmore 2012 EBL, EPOS LHC)

Combined fit: EGMF (II)

- Include the extragalactic magnetic field in the combined fit
 - 4D propagation using CRPropa3 instead of SimProp 1D
 - Use large-scale structure following Dolag 2012 for the source distribution
 - Results for a single model (CRPropa3, TALYS cross sections, Gilmore 2012 EBL, EPOS LHC)

[D. Wittkowski for the Pierre Auger Collaboration, PoS(ICRC2017)563]

Search for UHE neutrinos

down-going

AugerPrime: sensitivity to γ/ν

07.08.2018

[The Pierre Auger Collaboration, arXiv:1604.03637]