Exotic searches at the LHC

Adriana Milic

August 5 - 11, 2018 25th Rencontres du Vietnam - Quy Nhon, Viet Nam On behalf of the ATLAS, CMS, and LHCb collaborations

- Why do we need new physics?
- How are we searching for new results?
- Selection of a few **recently published analyses** from ATLAS, CMS, and LHCb are presented here.
 - Public results: <u>ATLAS</u>, <u>CMS</u>, and <u>LHCb</u> summary pages.

Why new physics?

- The Standard Model (SM) is a complete framework of particles and their interactions
- Tested at the LHC and several other experiments
- However, it has its limitations...

August 5-11, 2018

Why new physics?

August 5-11, 2018

Why new physics: Dark Matter

Galactic rotation curves

Gravitational lensing

Bullet cluster

- Discrepancy between measured rotation curves and theoretical predictions.
- Most mass must be invisible to us.

• The observed galaxy mass is not enough to account for the extent of the lensing. • Dark matter interacts presumably only weakly and bypassed the colliding gas. Visible by gravitational lensing of background objects (blue).

• The fermion loop yields a correction:

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2}\Lambda_{UV} + \dots$$

- If SM was correct for all energies $\rightarrow \Lambda_{UV} = \infty$, $m_{H} = \infty$
 - Obviously not true \rightarrow SM cannot be completely right.

- **Neutrino oscillations** (mixing between neutrino flavors) established that at least two of the SM neutrinos have non-zero masses.
- One of the first indications of BSM physics.
- Seesaw mechanism one of leading theoretical explanations. Heavy neutrino N is postulated that explains the small masses m_v of the other neutrinos.
 - $\circ \qquad m_v \sim y_v^{\ 2} v^2 / m_N^{\ }$
 - $\circ~~{\rm y_v}$ Yukawa coupling, v Higgs vacuum expectation value, ${\rm m_N}$ mass of heavy neutrino
 - \circ One obtains one light and one heavy neutrino.

UNIVERSITY OF

How to look for new particles: The LHC

UNIVERSITY OF TORONTO

- The Large Hadron Collider (LHC) collides protons and heavy ions.
- 2010 2012: \sqrt{s} (proton-proton collisions) of 7-8 TeV, ATLAS and CMS collected ~30 fb⁻¹ of data
- 2015 2018: $\sqrt{s} = 13$ TeV, accumulated data (as of ~July 2018): CMS ~113 fb⁻¹, ATLAS 136 fb⁻¹
- Target luminosity ~150 fb⁻¹

CMS Integrated Luminosity, pp

How to look for new particles: Experiments

- LHCb is a **specialized b-physics experiment** for primarily investigating CP violation in b-hadron interactions.
- 2010 2012: ~ 3.23 fb⁻¹ at $\sqrt{s} = 3.5/4$ TeV
- 2015 2018: ~4.62 fb⁻¹ at $\sqrt{s} = 6.5$ TeV

August 5-11, 2018

Adriana Milic

UNIVERSITY OF

TORONTO

How to look for new particles: Experiments

• ATLAS and CMS are general-purpose detectors, both consisting of several subsystems, designed to exploit the physics potential at the LHC.

Resonance searches

- Resonance = particle decaying into two other SM particles, creating a **bump in the invariant mass spectrum**.
- It is crucial to ensure **good resolution** on the reconstructed invariant mass (depends on the energy and momentum resolution of the objects).

Resonance searches: Dijet + lepton (ATLAS)

- Main observable: Invariant mass m_{ii} of the selected jet pair
- Generic search covering various BSMs
- Lepton trigger allows:
 - Probing smaller dijet masses
 - Reduction of QCD background

Dataset 79.8 fb⁻

UNIVERSITY OF

Generic resonance, X, decaying to two partons in association with a leptonically decaying W boson in the

- t-channel (left)
- s-channel (right)

ATLAS-CONF-2018-015

August 5-11, 2018

Resonance searches: Dijet + lepton (ATLAS)

- Very loose SR requirements
 - Isolated high-quality lepton + two jets
- Two different fit functions used for high and low mass region to establish shape of the estimated background.

- Systematic uncertainties
 - Background model 30-100 %
 - Jet energy scale and resolution 1.0-1.4 %
 - Lepton energy scale < 0.05 %
 - Luminosity 2%

- Most significant deviation found at $m_{ii} = 3.56 \text{ TeV} (p\text{-value} = 0.7).$
- Data consistent with the background-only hypothesis.

ATLAS-CONF-2018-015

August 5-11, 2018

• These results exclude BSM models predicting resonances that **decay to dijets and an associated lepton** with cross-sections larger than the reported limits.

ATLAS-CONF-2018-015

UNIVERSITY OF

TORONTO

August 5-11, 2018

August 5-11, 2018

Adriana Milic

15

Dark photons (LHCb)

- Search for massive dark photons A', whose coupling to the EM current is suppressed by factor of ε in comparison to the ordinary photon γ.
- $A' \rightarrow \mu^+ \mu^-$ decays analyzed.
 - For prompt A': $di \mu < m_A^2$, < 70 GeV
 - For long-lived A': 214 $MeV < m_A^2$, < 350 MeV

Backgrounds for prompt production

- Prompt $\gamma^* \rightarrow \mu^+ \mu^-$ production (irreducible)
- Resonant decays to $\mu^+\mu^-$ (these mass-peak regions avoided)
- Various types of misreconstruction of hadron products of heavy-quark decays.

Backgrounds for long-lived production

- Photon conversions to $\mu^+\mu^-$
- b-hadron decays where two muons are produced in the decay chain
- Low-mass tail from $K_S^{0} \rightarrow \pi^+\pi^-$ decays, where both pions are identified as muons

LHCb-PAPER-2017-038

Dataset 1.6 fb⁻

Dark photons (LHCb)

For masses $< m_{\phi}$:

• A' produced in meson-decays.

For masses $> m_{\phi}$:

• A' produced in Drell-Yan processes

Signal **sensitivity enhanced** by applying jet-based isolation requirement for $m(A') > m(\phi)$.

Prompt-like $m(\mu^+\mu^-)$ spectrum with Δm bins that are $\sigma[m(\mu^+\mu^-)]/2$ (mass resolution) wide.

Yields are obtained from fits applied to the spectrum, proportional to $\epsilon^2 \rightarrow \text{constraints set on } \epsilon^2$.

LHCb-PAPER-2017-038

Dark photons (LHCb)

Regions of the $[m(A'), \epsilon^2]$ parameter space excluded at 90% CL by the prompt-like A' search compared to the best existing limits.

Ratio of the observed upper limit on $n_{obs}^{A'}[m(A'), \epsilon^2]$ at 90% CL to its expected value.

Dataset 35.9 fb⁻¹

Signature

- Two same-sign leptons (low SM background)
- W decaying hadronically

Drell-Yan production and photon-initiated production of a Majorana neutrino N.

Signal regions SR	$m_N^{} < 80 { m GeV}$	m _N > 80 GeV
W boson propagator	on-shell	off-shell
Invariant mass final state	m _{lljj} ~ W boson mass	W on-shell $\rightarrow m_{jj}$ ~ W boson mass

Further splitting of SRs based on the **jet configuration** and the **flavor channels** ee, $\mu\mu$, and e μ .

August 5-11, 2018

Backgrounds

- SM processes with multiple prompt leptons
- Misidentified leptons
- Sign mismeasurement

Major contribution to systematic uncertainties coming from

- Estimate of the SM cross-section
- PDF variations
- Misidentified leptons

Observed distributions of the invariant mass of the leading lepton and jets for two high-mass regions.

Adriana Milic

UNIVERSITY OF

- The search is sensitive to 20 GeV $< m_N < 1600$ GeV.
- The limits set on the mixing parameters for $m_N > 430$ GeV are the most restrictive, and the first for masses greater than 1200 GeV.

No significant excess of events compared to the expected SM background prediction is observed.

August 5-11, 2018

Adriana Milic

UNIVERSITY OF

Dataset 36.1 fb⁻¹

- Search for heavy particle decaying into $e\mu$, $e\tau$ or $\mu\tau$.
- Analysis used for setting limits on
 - \circ Z' of the extended SM
 - Supersymmetric τ-sneutrino
 - Threshold mass for quantum black hole production with interpretations based on the ADD and Randall-Sundrum model.
- Search optimized for looking at phenomena in high mass range
 - Events selected by single lepton trigger ($p_T = 65 \text{ GeV}$).
 - Only events with exactly two different lepton flavors chosen.
 - Leptons required to be back-to-back $\rightarrow \Delta \phi$ (l,l') > 2.7

CERN-EP-2018-137

Channel	Main backgrounds
еμ	ttbar (suppressed by b-veto), diboson
ет	W+jets, multijet
μτ	W+jets, multijet

- Systematic uncertainties
 - PDFs
 - Multijet estimation
 - \circ m₁₁, modelling in ttbar events
 - Jet efficiency and resolution

Bayesian lower limits at 95% CL are set for all three considered models.

CERN-EP-2018-137

UNIVERSITY OF

TORONTO

August 5-11, 2018

Coupling limits for the lepton-flavor-violating Z' and the τ -sneutrino are more stringent than those from low-energy experiments for the channels including a τ .

95% CL upper limits on the RPV couplings $|\lambda_{323}|$ versus $|\lambda'_{311}|$ for a few values of m_v. CERN-EP-2018-137

- The performance of the LHC provides an **always increasing dataset** and allows the experiments to **improve their sensitivity** throughout Run 2.
- There is a large variety of exotics searches at the LHC, exploring
 - Various BSM models
 - Different experimental signatures
 - Broad kinematic regimes
- So far all data consistent with SM expectations in BSM searches. No significant excess was found.
- However, **new limits** significantly extend the Run 1 results.

Backup

Why new physics: Gauge coupling unification

- If electroweak and strong force are unified:
 - Unification mass in **Grand Unified Theory** (**GUT**) must be large enough such that the lifetime of the proton is compatible with current limit (> 10^{31} years)
- Gravity 10^{-38} times weaker than the strong interaction \rightarrow difficult to unify with other forces.
 - A possible solution for this hierarchy problem are **extra dimensions**.

Dark matter searches

- Three search approaches
 - Mono-X signature: Look for initial state radiation
 - Associate production of dark matter with SM particles
 - Direct search for mediators that result in dijet resonance

Regions in a dark matter mass-mediator mass plane excluded at 95% CL computed for a universal quark coupling $g_q = 0.25$ and for a DM coupling of $g_{DM} = 1.0$. More in Vasiliki's talk

August 5-11, 2018

Adriana Milic

on Friday

How to look for new particles: Particle reconstruction

- Exception to that are Mono-X searches.
- These new particles are expected at high masses.
 - Final state objects must have a high p_T .
 - Often final state particles expected.

UNIVERSITY OF

Bayesian lower limits at 95% CL are set for all three considered models.

CERN-EP-2018-137

UNIVERSITY OF

TORONTO

August 5-11, 2018