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but it’s only a prejudice

® HEP: calculations involving strong interactions are
difficult, limited precision

® CMP:some quantities are determined to
extremely high accuracy. Two examples:

® Josephson effect: protected by gauge invariance

® Hall conductance in quantum Hall systems is
quantized in units of e*/h up with 10~ precision
(protected by topology)




Contacts between HEP & CMP

Spontaneous symmetry breaking (1960s)

Renormalization group

Effective field theory (HEP:Weinberg 1979, CMP:
Landau’s Fermi liquid theory 1957)

Conformal field theory

Holography/Duality/Entanglement




HEP and CMP

® are more similar than most people think
® The difference is in the the goal
® HEP tries to push the reductionist frontier

® CMP tries to push the emergence frontier
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The fractional quantum Hall effect

2D electrons in B field:
Landau levels

filling factor

n=2

number of electrons

YT degeneracy of a LL n=|

U< 1 000550 n=0

® without interaction: large ground-state degeneracy

® |nteractions are essential for determining the ground
state

® We will concentrate on filling factor close to /2



When v approaches 1/2,a quasiparticle appears which moves
practically in straight line
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practically in straight line

L Q% SCIC
U

W=40nm n=1.74x10" cm=
a=200nm T=0.3K

(Kamburov et al, 2014)

What is the nature of this quasiparticle?




Composite fermion

® The standard picture: the quasiparticle is a
“composite fermion” = electron + 2 flux quanta
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Flux attachment

Jain, Lopez Fradkin, Ovchinnikov,
Halperin Lee Read ~ 1990

Zero B field for composite fermion (CF)

No left-over magnetic field: CFs move in straight line




Particle-hole symmetry

® But the standard picture does not know about the
particle-hole symmetry (known since 1997)

® Roughly speaking, particle-hole conjugation flips
the occupation number from 0 to | and vice versa

® Flux attachment breaks particle-hole symmetry:
flux is attached to particles




Puzzle

Particle-hole symmetry presents a huge puzzle for
CMP

Composite fermion seen experimentally
standard picture: CF = a type of “dressed electrons”

dressed electron = dressed hole!?
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Duality

One of the most profound findings in quantum
field theories is duality

Two seemingly different theories may encodes the
same physics

Famous dualities: Coleman-Mandelstam 1975,
Seiberg-Witten duality, gauge/gravity duality 1990s

Most dualities are seen as theorists’ toys

In the context of the quantum Hall effect, a duality
proposed ~40 years ago is suddenly relevant
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Bosonic particle-vortex duality

Peskin 1978; Dasgupta, Halperin 1981

2+ dim
L1 = \amb‘Z — m2|¢\2 - >\|¢‘4

Lo = (0, —ia,)B|? + m2|d|2 — Aol

Theory 1 Theory 2

m® <0  Goldstone boson photon

m?* > 0 particle vortex

charge density magnetic field b

magnetic field charge density



Fermionic particle-vortex duality

Roughly: free fermion =“QED” in 2+1 D
physical EM field

/

Theory I: L =iy (0, — 1A,

_ 1
Theory 2: L =ipy" (0, — ia,)Y 7 "' A0, a,

o

emergent U(l) gauge field

Theory | e Theory 2 Y

magnetic field density

density magnetic field



Theory | in magnetic field Theory 2 at finite density
zero charge density and zero magnetic field

Half-filled Landau level Fermi liquid

e = electrons Y = “composite fermion”




The fermionic particle-vortex duality provides an

explanation for the composite fermion near half
filling

The resulting theory, “‘Dirac composite fermion,”
has explicit particle-hole symmetry

Predicts CF has Berry phase of 11 around the
Fermi surface confirmed by numerical simulations

Suggests a new quantum Hall phase: PH-Pfaffian




PH-Pfaffian

BCS paired state of composite fermion

PH-Pfaffian: the simplest pairing pattern
(€ hathp) # 0

Is there such a state in nature!

There is no gapped nu=1/2 state, but there is a gapped
nu=5/2=2+1/2 state

known to exist from 1987

many candidates: Pfaffian Moore-Read 1991 anti-Pfaffian...

candidates differ from each other by thermal Hall

coeft q=KVT x




Observation of half-integer thermal Hall

conductance

Mitali Banerjee!, Moty Heiblum'#, Vladimir Umansky!, Dima E. Feldman?, Yuval Oreg' & Ady Stern'
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Fig. 4 | Summary of the normalized thermal conductance coefficient
results for v = 5/2. Plotted is the average K/k as a function of the
temperature at three different fillings on the v = 5/2 Gy conductance
plateau. A clear tendency of increased thermal conductance at lower
temperatures is visible. Such dependence is attributed to the increased
equilibration length (among downstream and upstream modes) at lower
temperatures (see ref. 2 for a similar behaviour of the v = 2/3 state).
Seventeen measurements were conducted, with K/x, falling in the range
K/kog = (2.53 4= 0.04) k¢ at electron base temperatures of Tp = 18-25 mK,
where most of the data points were taken.
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Fig. 5 | Possible orders predicted for the v = 5/2 state. Edge-mode
structure of the leading candidates for the many-body state of a fractional
quantum Hall v = 5/2 liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and
particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2),,

K =8, 331 and 113 liquids (‘A’ stands for ‘anti’). Their expected quantized
thermal Hall conductance, KT, in units of k(T are also shown. A right-
pointing double-line arrow denotes a downstream edge mode of a fermion
with charge e” = e, contributing Hall conductivity Gy = e*/h and K/ko = 1
Right- and left-pointing solid-line arrows denote a downstream and an
upstream fractional charge mode, respectively, contributing 0.5Gy =
e?/(2h) and K/ ko = 1. The wavy line denotes a fermionic neutral mode
with zero charge and K/x( = 1, and the dashed line denotes a Majorana
mode with zero charge and K/ky = 1/2. A neutral mode with K/x¢ =1

is physically equivalent to two Majorana modes. The left (right) part of
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The “seed duality”

Both the bosonic and fermionic particle-vortex duality can
be derived from a “seed duality”

fermion = boson + flux

11 1

L =Ly Al — -——AdA L = L|¢p,al + —ada

2 47 47t

From this duality, a whole “web” of new dualities can be
derived

Karch, Tong; Seiberg, Senthil, Wang, Witten




Extreme small N

It turns out that in HEP literature there has been
suggestions of duality between bosonic and
fermionic Chern-Simons theories

Verified at large N but speculated to be valid also
at small N Aharony 2015

Baryons, monopoles and dualities in
Chern-Simons-matter theories

Ofer Aharony

Department of Particle Physics and Astrophysics,
Weizmann Institute of Science, Rehovot 7610001, Israel
E-mail : Ofer.Aharony@weizmann.ac.il

U(N ),k coupled to scalars <> SU(k)_nyn,/2 coupled to fermions,

seed duality N =Ny=Fk=1



gauge/gravity

duality . .
interacting

topological
insulators

half-filled
Landau level

holographic

Peskin-D ta-
higher-spin duality SonTasetp

Halperin duality

fermionic particle-
vortex duality

boson-fermion
seed duality

large N Chern-Simons \ —
matter duality

self-dual
Nf=2 QED
many more dualities




Conclusion

® The half-filled Landau level provides an
experimentally realizable example of duality

® Mysterious appearance of a new type of
quasiparticle Emergence

® |nteraction between high-energy and condensed
matter physics is fruitful




Thank you
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® without interaction: large ground-state degeneracy

® |nteractions are essential for determining the
ground state

® We will concentrate on filling factor close to /2



