Pushing the emergence frontier: from fractional quantum Hall effect to field-theoretic dualities

Dam Thanh Son (University of Chicago) Windows to the Universe, Quy Nhon 8/6/2018

Subdivision of physics

Subdivision of physics

Subdivision of physics

Prejudice about HEP and CMP

- clean
- reliable calculations
- highly accurate theoretical predictions

- dirty ("squalid-state physics")
- approximations
- imprecise (both theory & experiments)

Prejudice about HEP and CMP

- clean
- reliable calculations
- highly accurate theoretical predictions

- dirty ("squalid-state physics")
- approximations
- imprecise (both theory & experiments)

• HEP: calculations involving strong interactions are difficult, limited precision

- HEP: calculations involving strong interactions are difficult, limited precision
- CMP: some quantities are determined to extremely high accuracy. Two examples:

- HEP: calculations involving strong interactions are difficult, limited precision
- CMP: some quantities are determined to extremely high accuracy. Two examples:
 - Josephson effect: protected by gauge invariance

- HEP: calculations involving strong interactions are difficult, limited precision
- CMP: some quantities are determined to extremely high accuracy. Two examples:
 - Josephson effect: protected by gauge invariance
 - Hall conductance in quantum Hall systems is quantized in units of e²/h up with 10⁻⁹ precision (protected by topology)

Contacts between HEP & CMP

- Spontaneous symmetry breaking (1960s)
- Renormalization group
- Effective field theory (HEP: Weinberg 1979, CMP: Landau's Fermi liquid theory 1957)
- Conformal field theory
- Holography/Duality/Entanglement

HEP and CMP

- are more similar than most people think
- The difference is in the the goal
 - HEP tries to push the reductionist frontier
 - CMP tries to push the emergence frontier

2D electrons in B field: Landau levels

> ----- n=2 ----- n=1 ----- n=0

2D electrons in B field: Landau levels

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

------ n=2 ----- n=1 ----- n=0

2D electrons in B field: Landau levels

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

 $\nu < 1$

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}} \qquad \qquad n=2 \\ n=1 \\ \nu < 1 \qquad \qquad \bullet \bullet \bullet \bullet \bullet \bullet \bullet \quad n=0$

• without interaction: large ground-state degeneracy

n=2

n=1

n=0

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$ $\nu < 1$

• without interaction: large ground-state degeneracy

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

 $\nu < 1$

• without interaction: large ground-state degeneracy

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}} -$

 $\nu < 1$ n=0

n=2

n=1

- without interaction: large ground-state degeneracy
- Interactions are essential for determining the ground state
- We will concentrate on filling factor close to 1/2

When v approaches 1/2, a quasiparticle appears which moves practically in straight line

(Kamburov et al, 2014)

When v approaches 1/2, a quasiparticle appears which moves practically in straight line

(Kamburov et al, 2014)

What is the nature of this quasiparticle?

Composite fermion

• The standard picture: the quasiparticle is a "composite fermion" = electron + 2 flux quanta

 $\nu = \frac{1}{2}$ $\uparrow \rhoer @$

Jain, Lopez Fradkin, Ovchinnikov, Halperin Lee Read ~ 1990

 $\nu = \frac{1}{2}$ $\left| \begin{array}{c} \uparrow \\ \rho er \end{array} \right|$

Jain, Lopez Fradkin, Ovchinnikov, Halperin Lee Read ~ 1990

per e Zero B field for composite fermion (CF)

Jain, Lopez Fradkin, Ovchinnikov, Halperin Lee Read ~ 1990

No left-over magnetic field: CFs move in straight line

Particle-hole symmetry

- But the standard picture does not know about the particle-hole symmetry (known since 1997)
- Roughly speaking, particle-hole conjugation flips the occupation number from 0 to 1 and vice versa

 Flux attachment breaks particle-hole symmetry: flux is attached to particles

Puzzle

- Particle-hole symmetry presents a huge puzzle for CMP
- Composite fermion seen experimentally
- standard picture: CF = a type of "dressed electrons"
- dressed electron = dressed hole?

• One of the most profound findings in quantum field theories is duality

- One of the most profound findings in quantum field theories is duality
- Two seemingly different theories may encodes the same physics

- One of the most profound findings in quantum field theories is duality
- Two seemingly different theories may encodes the same physics
- Famous dualities: Coleman-Mandelstam 1975, Seiberg-Witten duality, gauge/gravity duality 1990s

- One of the most profound findings in quantum field theories is duality
- Two seemingly different theories may encodes the same physics
- Famous dualities: Coleman-Mandelstam 1975, Seiberg-Witten duality, gauge/gravity duality 1990s
- Most dualities are seen as theorists' toys

- One of the most profound findings in quantum field theories is duality
- Two seemingly different theories may encodes the same physics
- Famous dualities: Coleman-Mandelstam 1975, Seiberg-Witten duality, gauge/gravity duality 1990s
- Most dualities are seen as theorists' toys
- In the context of the quantum Hall effect, a duality proposed ~40 years ago is suddenly relevant

Peskin 1978; Dasgupta, Halperin 1981

2+1 dim

Peskin 1978; Dasgupta, Halperin 1981

 $\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$ $\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$

Peskin 1978; Dasgupta, Halperin 1981

 $\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$ $\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$

Theory 1	Theory 2
----------	----------

Peskin 1978; Dasgupta, Halperin 1981

$$\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$$
$$\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$$

Theory 1 Theory 2

 $m^2 < 0$ Goldstone boson photon

Peskin 1978; Dasgupta, Halperin 1981

$$\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$$
$$\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$$

	Theory 1	Theory 2
$m^{2} < 0$	Goldstone boson	photon
$m^2 > 0$	particle	vortex

Peskin 1978; Dasgupta, Halperin 1981

$$\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$$
$$\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$$

	Theory 1	Theory 2
$m^2 < 0$	Goldstone boson	photon
$m^2 > 0$	particle	vortex
	charge density	magnetic field b

Peskin 1978; Dasgupta, Halperin 1981

$$\mathcal{L}_1 = |\partial_\mu \phi|^2 - m^2 |\phi|^2 - \lambda |\phi|^4$$
 $\mathcal{L}_2 = |(\partial_\mu - ia_\mu)\tilde{\phi}|^2 + m^2 |\tilde{\phi}|^2 - \lambda |\tilde{\phi}|^4$

Theory 2

 $m^2 < 0$ Goldstone boson photon

 $m^2 > 0$ particle

> charge density magnetic field

vortex

magnetic field b

charge density

Fermionic particle-vortex duality

DTS; Metlitski, Vishwanath; Wang, Senthil 2015

physical EM field

Roughly: free fermion = "QED" in 2+1 D

Theory I: $\mathcal{L} = i \bar{\psi}_e \gamma^\mu (\partial_\mu - i A_\mu) \psi_e$

Theory 2:
$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}(\partial_{\mu} - ia_{\mu})\psi - \frac{1}{4\pi}\epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}a_{\lambda}$$

emergent U(I) gauge field

Theory I ψ_e magnetic field density Theory 2 ψ

density

magnetic field

Theory I in magnetic field zero charge density

Half-filled Landau level

 $\psi_{\rm e} = {\rm electrons}$

Theory 2 at finite density and zero magnetic field

Fermi liquid

 ψ = "composite fermion"

- The fermionic particle-vortex duality provides an explanation for the composite fermion near half filling
- The resulting theory, "Dirac composite fermion," has explicit particle-hole symmetry
- Predicts CF has Berry phase of π around the Fermi surface confirmed by numerical simulations
- Suggests a new quantum Hall phase: PH-Pfaffian

PH-Pfaffian

- BCS paired state of composite fermion
- PH-Pfaffian: the simplest pairing pattern

 $\left\langle \epsilon^{\alpha\beta}\psi_{\alpha}\psi_{\beta}\right\rangle \neq 0$

- Is there such a state in nature?
- There is no gapped nu=1/2 state, but there is a gapped nu=5/2=2+1/2 state
 - known to exist from 1987
 - many candidates: Pfaffian Moore-Read 1991 anti-Pfaffian...
 - candidates differ from each other by thermal Hall coeff $\mathbf{q} = K \, \nabla T \times \hat{\mathbf{z}}$

Observation of half-integer thermal Hall conductance

Mitali Banerjee¹, Moty Heiblum¹*, Vladimir Umansky¹, Dima E. Feldman², Yuval Oreg¹ & Ady Stern¹

Fig. 4 | Summary of the normalized thermal conductance coefficient results for $\nu = 5/2$. Plotted is the average K/κ_0 as a function of the temperature at three different fillings on the $\nu = 5/2$ G_H conductance plateau. A clear tendency of increased thermal conductance at lower temperatures is visible. Such dependence is attributed to the increased equilibration length (among downstream and upstream modes) at lower temperatures (see ref. ²⁶ for a similar behaviour of the $\nu = 2/3$ state). Seventeen measurements were conducted, with K/κ_0 falling in the range $K/\kappa_0 = (2.53 \pm 0.04)\kappa_0$ at electron base temperatures of $T_0 = 18-25$ mK, where most of the data points were taken.

Fig. 5 | Possible orders predicted for the $\nu = 5/2$ state. Edge-mode structure of the leading candidates for the many-body state of a fractional quantum Hall $\nu = 5/2$ liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2)₂, K = 8, 331 and 113 liquids ('A' stands for 'anti'). Their expected quantized thermal Hall conductance, KT, in units of $\kappa_0 T$ are also shown. A rightpointing double-line arrow denotes a downstream edge mode of a fermion with charge $e^* = e$, contributing Hall conductivity $G_{\rm H} = e^2/h$ and $K/\kappa_0 = 1$ Right- and left-pointing solid-line arrows denote a downstream and an upstream fractional charge mode, respectively, contributing $0.5G_{\rm H} = e^2/(2h)$ and $K/\kappa_0 = 1$. The wavy line denotes a fermionic neutral mode with zero charge and $K/\kappa_0 = 1/2$. A neutral mode with $K/\kappa_0 = 1$ is physically equivalent to two Majorana modes. The left (right) part of

Observation of half-integer thermal Hall conductance

Mitali Banerjee¹, Moty Heiblum¹*, Vladimir Umansky¹, Dima E. Feldman², Yuval Oreg¹ & Ady Stern¹

Fig. 5 | Possible orders predicted for the $\nu = 5/2$ state. Edge-mode structure of the leading candidates for the many-body state of a fractional quantum Hall $\nu = 5/2$ liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2)₂, K = 8, 331 and 113 liquids ('A' stands for 'anti'). Their expected quantized thermal Hall conductance, KT, in units of $\kappa_0 T$ are also shown. A rightpointing double-line arrow denotes a downstream edge mode of a fermion with charge $e^* = e$, contributing Hall conductivity $G_{\rm H} = e^2/h$ and $K/\kappa_0 = 1$. Right- and left-pointing solid-line arrows denote a downstream and an upstream fractional charge mode, respectively, contributing $0.5G_{\rm H} = e^2/(2h)$ and $K/\kappa_0 = 1$. The wavy line denotes a fermionic neutral mode with zero charge and $K/\kappa_0 = 1/2$. A neutral mode with $K/\kappa_0 = 1$ is physically equivalent to two Majorana modes. The left (right) part of

Observation of half-integer thermal Hall conductance

Mitali Banerjee¹, Moty Heiblum¹*, Vladimir Umansky¹, Dima E. Feldman², Yuval Oreg¹ & Ady Stern¹

Fig. 5 | Possible orders predicted for the $\nu = 5/2$ state. Edge-mode structure of the leading candidates for the many-body state of a fractional quantum Hall $\nu = 5/2$ liquid: Pfaffian, anti-Pfaffian (A-Pfaffian) and particle-hole Pfaffian (PH-Pfaffian) topological orders and the SU(2)₂, K = 8, 331 and 113 liquids ('A' stands for 'anti'). Their expected quantized thermal Hall conductance, KT, in units of $\kappa_0 T$ are also shown. A rightpointing double-line arrow denotes a downstream edge mode of a fermion with charge $e^* = e$, contributing Hall conductivity $G_{\rm H} = e^2/h$ and $K/\kappa_0 = 1$ Right- and left-pointing solid-line arrows denote a downstream and an upstream fractional charge mode, respectively, contributing $0.5G_{\rm H} = e^2/(2h)$ and $K/\kappa_0 = 1$. The wavy line denotes a fermionic neutral mode with zero charge and $K/\kappa_0 = 1/2$. A neutral mode with $K/\kappa_0 = 1$ is physically equivalent to two Majorana modes. The left (right) part of

The "seed duality"

Both the bosonic and fermionic particle-vortex duality can be derived from a "seed duality"

fermion = boson + flux

$$\mathcal{L} = L[\psi, A] - \frac{1}{2} \frac{1}{4\pi} A dA \qquad \qquad \mathcal{L} = L[\phi, a] + \frac{1}{4\pi} a da + \frac{1}{2\pi} A da$$

From this duality, a whole "web" of new dualities can be derived

Karch, Tong; Seiberg, Senthil, Wang, Witten

Extreme small N

- It turns out that in HEP literature there has been suggestions of duality between bosonic and fermionic Chern-Simons theories
- Verified at large N but speculated to be valid also at small N Aharony 2015

Baryons, monopoles and dualities in Chern-Simons-matter theories

Ofer Aharony

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel E-mail: Ofer.Aharony@weizmann.ac.il

 $U(N)_{k,k}$ coupled to scalars $\leftrightarrow SU(k)_{-N+N_f/2}$ coupled to fermions,

(2.7)

seed duality $N = N_f = k = 1$

Conclusion

- The half-filled Landau level provides an experimentally realizable example of duality
- Mysterious appearance of a new type of quasiparticle Emergence
- Interaction between high-energy and condensed matter physics is fruitful

Thank you

2D electrons in B field: Landau levels

> ----- n=2 ----- n=1 ----- n=0

2D electrons in B field: Landau levels

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

------ n=2 ----- n=1 ----- n=0

2D electrons in B field: Landau levels

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

 $\nu < 1$

filling factor

 $\nu = \frac{\text{number of electrons}}{\text{degeneracy of a LL}}$

_____ n=l

n=2

 $\nu < 1 \qquad \qquad \textbf{-000000} \quad \textbf{n=0}$

- without interaction: large ground-state degeneracy
- Interactions are essential for determining the ground state
- We will concentrate on filling factor close to 1/2