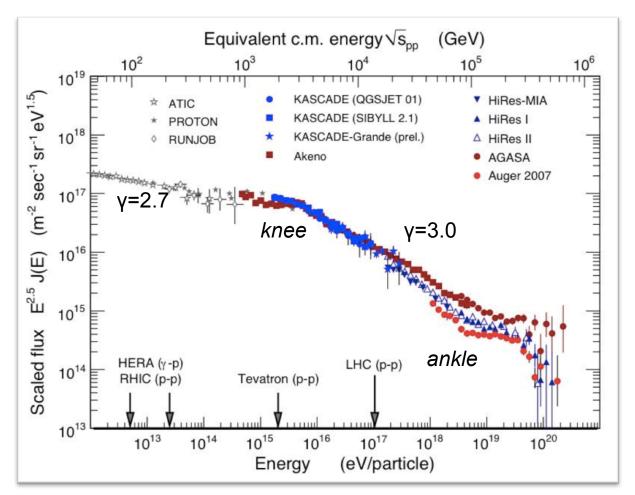
Searching for PeVatrons in the Galaxy

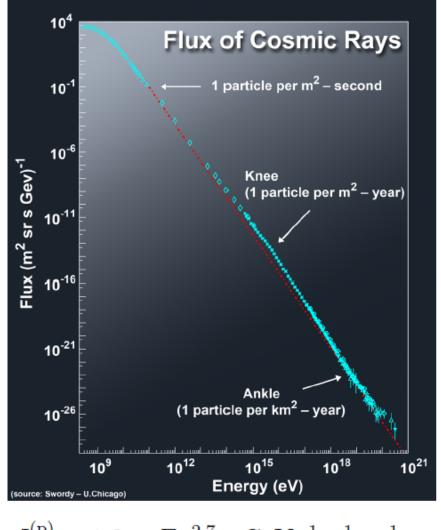
Igor Oya, DESY VHEPU, Quy Nhon, 17-8-2018


HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Cosmic Rays

a 100-year-old mystery

• High energy cosmic particles, Cosmic Rays (CR) continuously arriving on Earth (*V. Hess, 1912*)

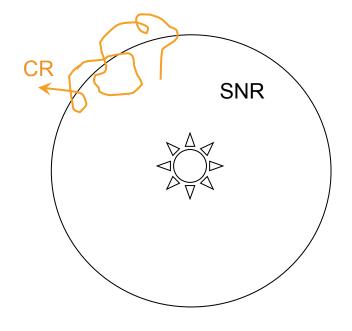

- Almost a single power law spectrum, with
 - a knee at few PeVs
 - ankle at ~10 EeV
- 89% protons, 9% helium, 1% electrons

Cosmic Rays

a 100-year-old mystery

- CRs up to the knee → Galactic origin (accelerated in galactic objects such as Supernova Remnants (SNRs)).
- CRs between the knee and the ankle
 → Unclear (thought to be Galactic
 but the energies are too high for
 being produced in the SNR shocks)
- CRs beyond the ankle → extra-Galactic.
- Galactic CR energy budget: L_{CR} ~ 10⁴⁰ – 10⁴¹ erg / s

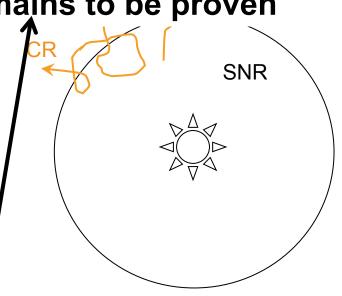
$$J_{\odot}^{(p)} = 1.8 \times E_{GeV}^{-2.7} \quad GeV^{-1}s^{-1}sr^{-1}cm^{-2}$$


Why are CRs interesting?

- Energy density of Galactic CRs comparable to starlight, magnetic fields, and gas kinetic energy
 - These are all tightly connected
 - CRs carry energy throughout galaxies
 - CRs closely connected to evolution of stars and galaxies
- CRs provide insights in evolution of massive stars
 - Death (supernova remnants)
 - Life (winds from massive stars)
 - Birth (perhaps) signaling onset of fusion/stellar winds
 - Initiate astro-chemistry \rightarrow key ingredient for life?!
- CRs trace outflows and jets
 - Jets, pulsar winds, accretion, GRBs, ...

Standard Model of CRs

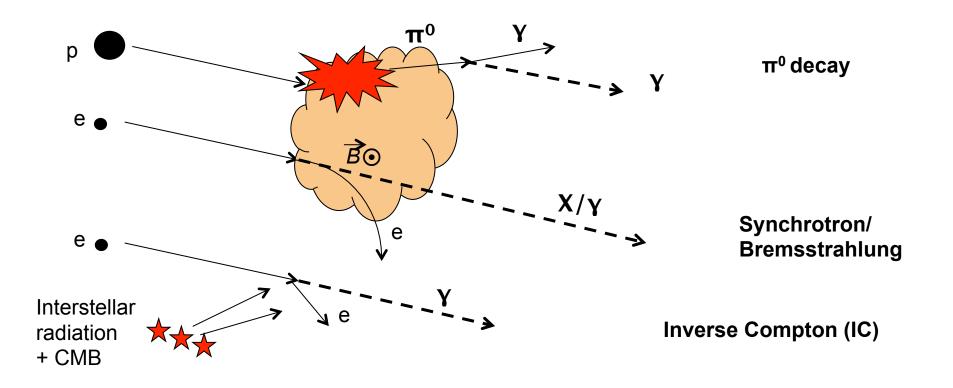
How are particles accelerated up to ~1 PeV?


- Standard model: SNRs accelerate cosmic rays up to the knee:
 - W_{CR} ~ 10⁵⁰ erg per SN (~10 % of total SN budget)
 - With a rate of 1/30 years and available energy SNs could produce the necessary power to sustain the Galactic CR population
- Diffusive Shock Acceleration (DSA) predicts and E⁻² spectrum and is compatible with ~10% efficiency for the acceleration process
- E⁻² type spectrum to very high energies
- Acceleration of highest energy CR in early stages of SNR
- Other possible contributors to Galactic CRs:
 - Galactic Centre (GC), Microquasars, superbubles, pulsars/plerions, OB, W-R Stars, ...

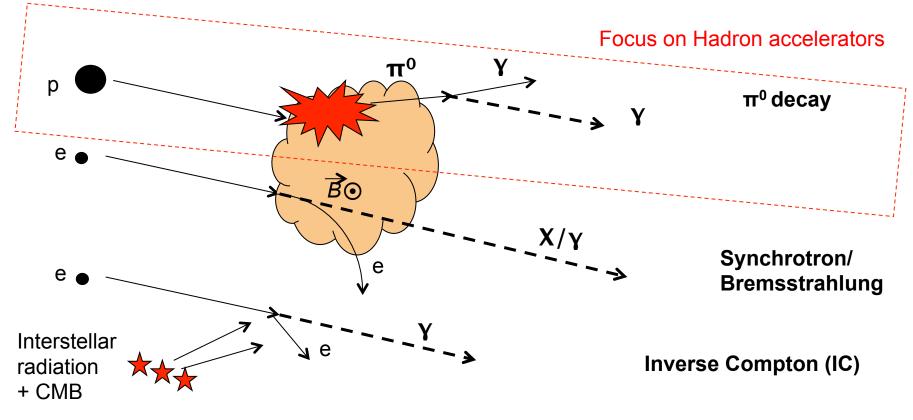
Standard Model of CRs

How are particles accelerated up to ~1 PeV?

- - W_{CR} ~ 10⁵⁰ erg per SN (~10 % of total SN budget)
 - With a rate of 1/30 years and available energy SNs could produce the necessary power to sustain the Galactic CR population
- Diffusive Shock Acceleration (DSA) predicts and E⁻² spectrum and is compatible with ~10% efficiency for the acceleration process
- E⁻² type spectrum to very high energies
- Acceleration of highest energy CR in early stages of SNR
- Other possible contributors to Galactic CRs:
 - Galactic Centre (GC), Microquasars, superbubles, pulsars/plerions, OB, W-R Stars, ...


Measuring CR origin

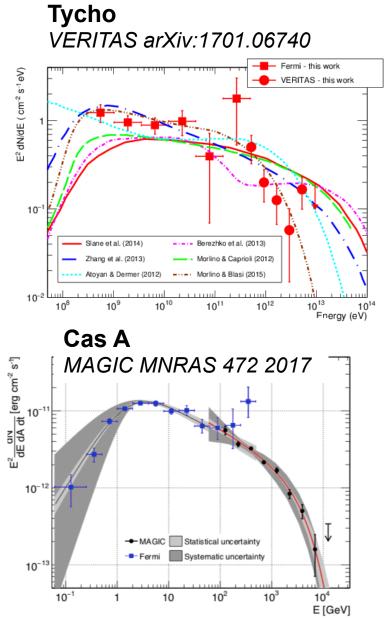
- CR trajectory is deviated due to interstellar/ intergalactic magnetic fields → Indirect detection methods are needed
- Neutral messengers (photons & neutrinos) can be used for tracing back to the origin of their astrophysical sources


 Ground-based gamma-ray detectors such as IACTs and water Cherenkov instrument are specially well suited

→ One of the main drivers of VHE gammaray astronomy CR

Gamma Rays from multi-TeV particles

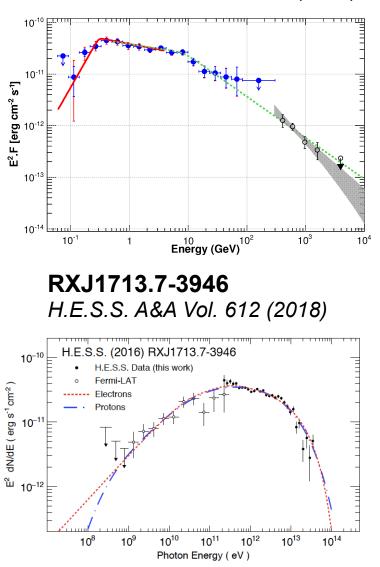
Gamma Rays from multi-TeV particles

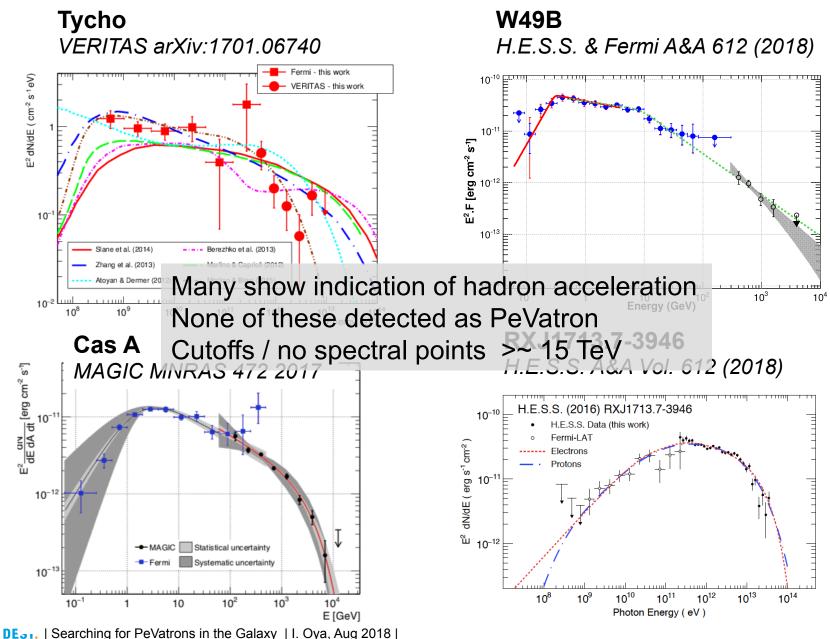

 Galactic sources accelerating CRs up to PeV energies – *PeVatrons* can be identified and analyzed via the study of gamma-ray emission

Looking for Galactic PeVatrons

- Many PeVatrons must exist in the Galaxy to explain local cosmic ray flux at the "knee"
- PeVatron candidates
 - Likely proton accelerator site such as a SNR
 - Target dense gas region \rightarrow Produce VHE gamma rays via pp and then π^0 decay
 - Hard spectral index with no sign cutoff at 10s of TeV
 - Hard X-ray emission from secondary electrons
- Electron accelerators produce TeV gamma rays via IC
 - Also produce keV X-ray synchrotron emission
 - Must be some to explain local CR electrons
 - Would expect co-acceleration with protons, but much more rapid (factor ~100) energy losses
- Spectral study + modeling to distinguish leptonic/hadronic emission

Study with IACTs, water Cherenkov detectors (+HE satellites + MWL)

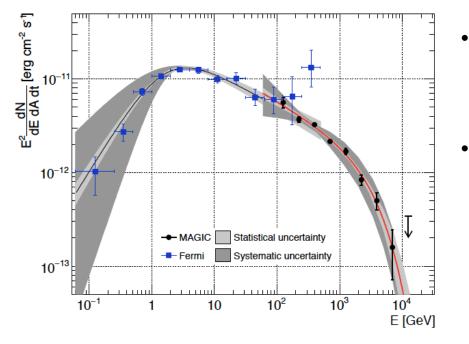

Are young SNRs PeVatrons?


DEst. | Searching for PeVatrons in the Galaxy | I. Oya, Aug 2018 |

W49B

H.E.S.S. & Fermi A&A 612 (2018)

Are young SNRs PeVatrons?



MAGIC studies of Cas A

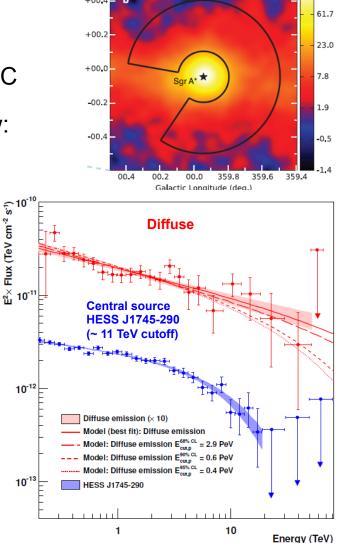
MAGIC, MNRAS 472 2017

- Cassiopea A (Cas A) would appear as one of the best PeVatron candidates
 - relatively young (about 300 years)
 - largely studied in radio and X-ray bands, which constrains essential parameters for testing emission models.
 - CR accelerator

- However MAGIC team found a significant exponential cut-off at 3.5 TeV
- Assuming hadronic processes no significant cosmic ray diffusion
 - → Cas A is not a PeVatron at its present age

The Galactic Centre (I)

HESS Collaboration. Nature. 531, 476 (2016)


160.0

Acceleration of PeV protons in the Galactic Centre

- 220 h observation data
- Hard spectrum diffuse emission around the GC
- The diffuse emission spectrum is a power-law:

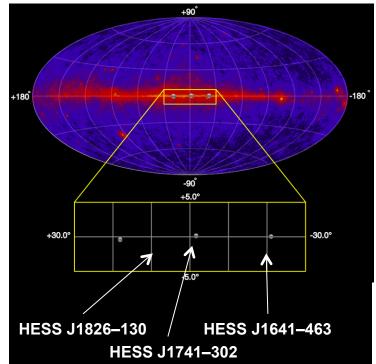
 $\Phi = (1.92 \pm 0.08_{\text{stat}} \pm 0.28_{\text{svs}}) \times 10^{-12} \text{ TeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ $\Gamma = 2.32 \pm 0.05_{\text{stat}} \pm 0.11_{\text{sys}}$

- Assuming:
 - pp interactions \rightarrow subsequent π^0 decay
 - a cutoff in the parent proton spectrum $\rightarrow 1\sigma$, 2σ and 3σ cutoff \rightarrow 2.9 PeV, 0.6 PeV and 0.4 PeV.
- Strongest indication found so far of a VHE cosmic hadronic accelerator operating as a PeVatron.

1 aye 14

The Galactic Centre (II)

HESS Collaboration, Nature, 531, 476 (2016)

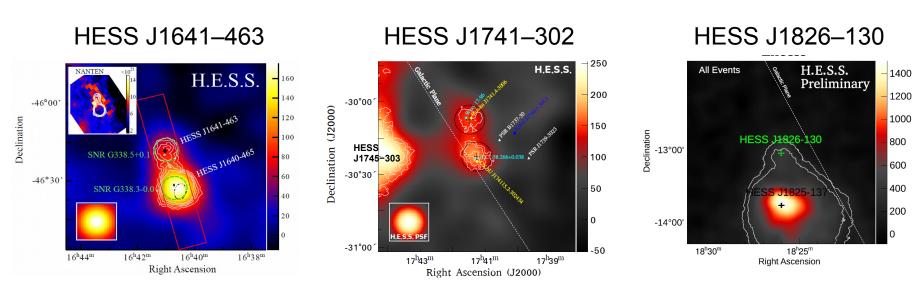

Acceleration of PeV protons in the Galactic Centre

- Analysis of the ridge emission
- Calculated cosmic-ray energy density profile ∝ L/M
- Continuous CR injector over ~ few 1000 yr
 - Central BH most likely accelerator
- CR power injected ~10³⁸ erg/s
- Could explain galactic CRs >0.1 PeV if BH more active in past
- Or additional PeV accelerators in the Galaxy are needed
- deg. +00.2+00.0w_{cR}(≥ 10 TeV) (10⁻³ eV cm⁻³) 30 Galactic -00. -00 20 01.0 00.5 00.0 359.5 359.0 Galactic Longitude (deg.) 10 continuous injection and diffusive propagation Impulsive injection . 6.0 × local CR density of CRs and diffusive propagation Wind-driven or ballistic propagation 2 20 40 60 80 100 120 140 160 180 200 Projected distance (pc)
- Note: interaction of the diffuse Galactic CR population with the local dense gas could be contributing significantly. (D. Grasso presentation on Monday)

DESY. | Searching for PeVatrons in the Galaxy | I. Oya, Aug 2018 |

Hard Spectrum H.E.S.S. Sources (I)

- EO Angüner et al (HESS), ICRC 2017
- Three unidentified H.E.S.S. sources showed interesting characteristics:
- 1. Very hard index spectrum
- 2. Coincident with dense gas regions
- 3. Do not show variable VHE emission
- Are these sources capable of accelerating protons up PeV energies?
- Faint and located near other bright VHE sources, thus their (apparent) emission is contaminated and suffering from source confusion



Hard Spectrum H.E.S.S. Sources (II)

HESS, ApJ Letters, 794 (2014) EO Angüner et al (HESS), ICRC 2017 HESS, A&A 612, A13 (2018)

Source Name	Observation Period	Live-time	Significance	Best Fit Position	Extension	Source Morphology
		h	σ	(J2000)	(°)	
HESS J1641-463	2004 - 2011	72	8.5	R.A.: $16^{h}41^{m}2.1^{s}$	0.050	Point-like
(E > 4.0 TeV)				Dec.: -46°18'13.0"	(UL)	
HESS J1741-302	2004 - 2013	145	7.8	R.A.: 17 ^h 41 ^m 15.8 ^s	0.077	Point-like
(E > 0.4 TeV)				Dec.: -30°22'30.7"	(UL)	
HESS J1826-130	2004 - 2015	204	21.0	R.A.: 18 ^h 26 ^m 0.2 ^h	0.17 ± 0.02	Extended
(E > 0.5 TeV)				Dec.: -13°02'1.8"		

Hard Spectrum H.E.S.S. Sources (III)

HESS, ApJ Letters, 794 (2014) EO Angüner et al (HESS), ICRC 2017 HESS, A&A 612, A13 (2018)

HESS J1641–463 (15% > 0.64 TeV)

-46°00

-46°30'

350 300 \$250 \$200 \$150

#100E

50

250

200 3150 H100

-0.5 -0.4

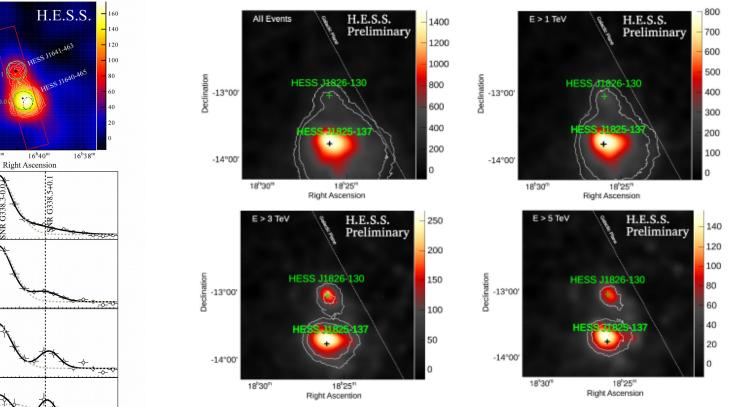
 $16^{h}44^{m}$

All events

E > 1 TeV

E > 3 TeV

E > 5 TeV


SNR G338.3-0.0

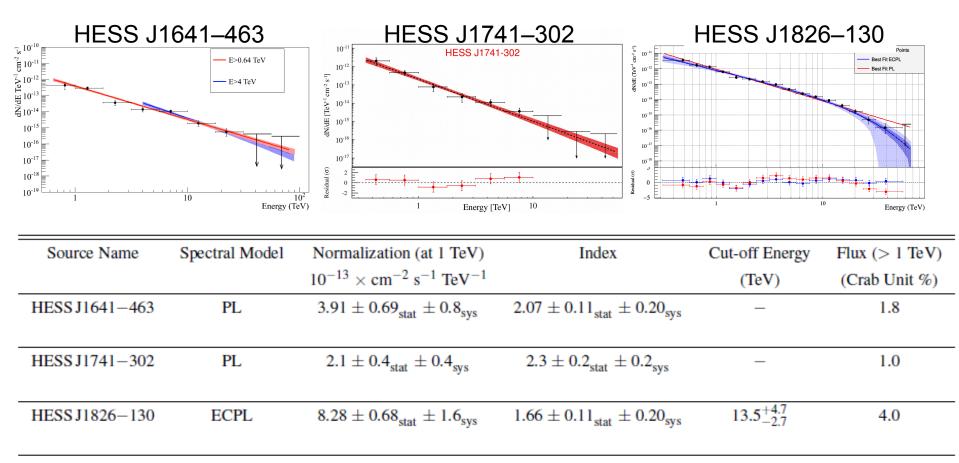
16^h42^m

NR G338.3-

Declination

HESS J1826–130 (40% > 0.4 TeV)

Analysis in energy bands is a powerful technique. Contamination decreases with the increasing energy threshold


-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Projected distance [°]

Hard Spectrum H.E.S.S. Sources (IV)

Spectra

HESS, ApJ Letters, 794 (2014) EO Angüner et al (HESS), ICRC 2017 HESS, A&A 612, A13 (2018)

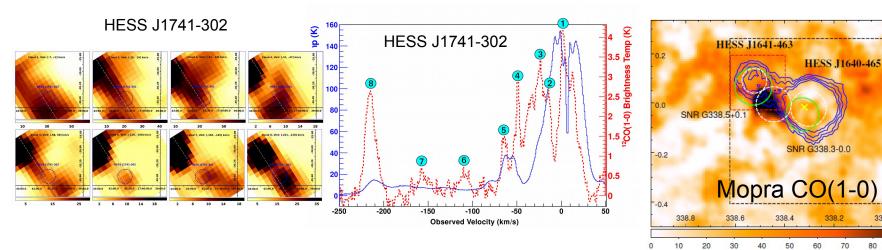
- Low statistics, systematics at higher energies \rightarrow determining spectral features difficult
- Source contamination may have potentially distort the observed spectra

DESY. | Searching for PeVatrons in the Galaxy | I. Oya, Aug 2018 |

Hard Spectrum H.E.S.S. Sources (V)

ISM

HESS, ApJ Letters, 794 (2014) EO Angüner et al (HESS), ICRC 2017 HESS, A&A 612, A13 (2018)


338 0

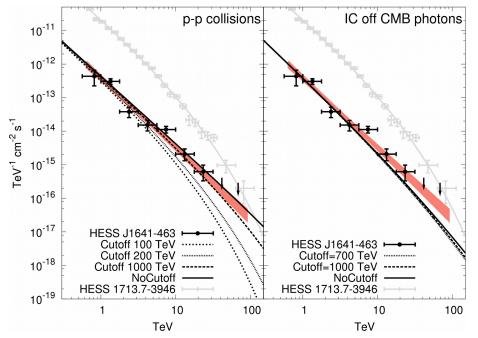
Page 20

• Distribution of molecular gas is obtained by integrating the $^{12}CO 1 \rightarrow 0$ rotational line emission measured with the NANTEN Sub-millimeter Observatory

Source	J1641–463	J1741–302	J1826–130
N _{gas} [cm ⁻³]	~100	62 - 380	~600
Mass [10 ⁵ M _{sun}]	~2.4	1.9 - 9.8	3.0
Distance [kpc]	~11	5 - 11.2	3.7 - 4.7

- HESSJ1641 ISM studies by Lau et al, MNRAS 464, 3757
 - High average ISM density >100 cm⁻³
 - Dense gas (>10⁴ cm⁻³) bridge between TeV sources

DESY. | Searching for PeVatrons in the Galaxy | I. Oya, Aug 2018 |

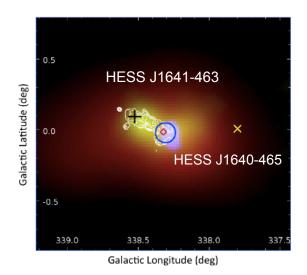

Hard Spectrum H.E.S.S. Sources (V)

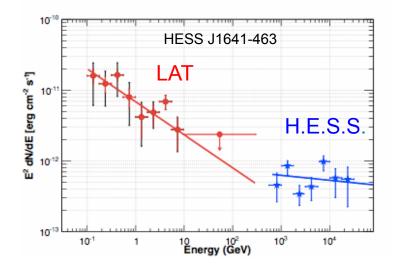
H.E.S.S.

Hadronic vs leptonic

HESS, ApJ Letters, 794 (2014) EO Angüner et al (HESS), ICRC 2017 HESS, A&A 612, A13 (2018)

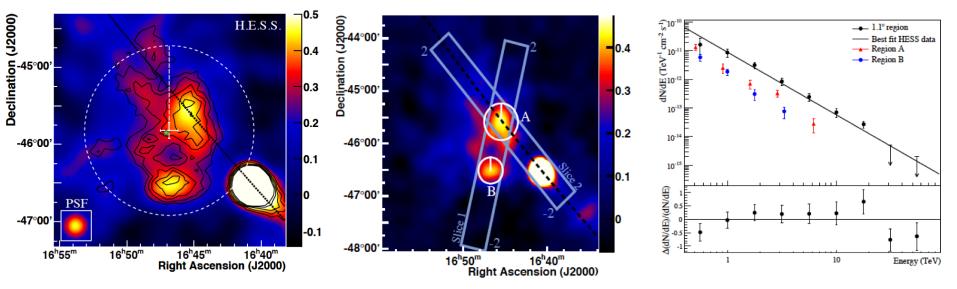
- If hadronic origin + gas regions properties, the parental particle spectra can extend up to at least several hundreds of TeV
 - HESS J1641–463 \rightarrow Wpp = 10⁴⁸ erg
 - HESS J1826–130 \rightarrow Wpp = 10⁴⁷ erg
 - HESS J1741–302 \rightarrow Wpp = [7.0 x 10⁴⁶, 1.5 x 10⁴⁸]
- Leptonic origin is not discarded:
 - J1741-302 & J1826-130 could be leptonic
 - J1826–130 Vela X-like spectrum
- HESS J1641-463 case:
 - P-P collisions with a particle index of -2.1
 → Protons: 100 TeV (99 CL)
 - IC off CMB photons with index -3.14.
 Electrons: 700 TeV (99% CL) → strongly disfavored




HESS J1641-463 & Fermi-LAT

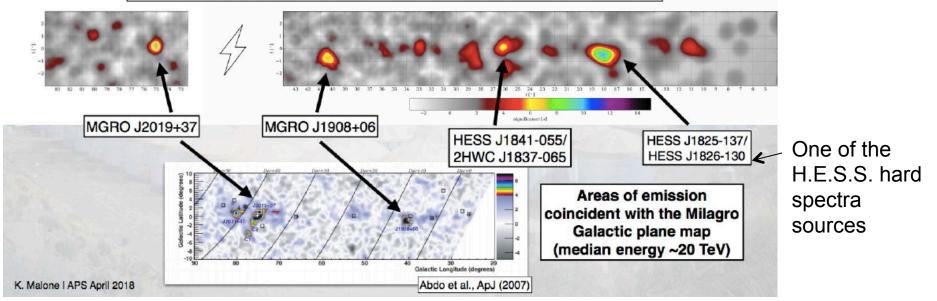
Fermi-LAT, ApJL, 794, L16, 2014

- Softer spectrum with Γ = 2.47 ± 0.05 ± 0.06.
- The connection the hard H.E.S.S. spectrum remains unclear: two different mechanisms, or overlapping sources?



Another candidate from H.E.S.S.: Westerlund 1 H.E.S.S. A&A 537, A114 (2012)

- Massive stellar cluster, superbubble candidate
- Hard power-law index 2.19 +/- 0.08_{stat} +/- 0.20_{svst} at VHEs
- Very extended source 1.1 deg, complicated analysis
- Young massive star clusters plausible PeVatron candidates: See talk of R. Yang
- Deeper study is needed in this and other candidates: Westerlund 2, Cygnus Cocoon, ...

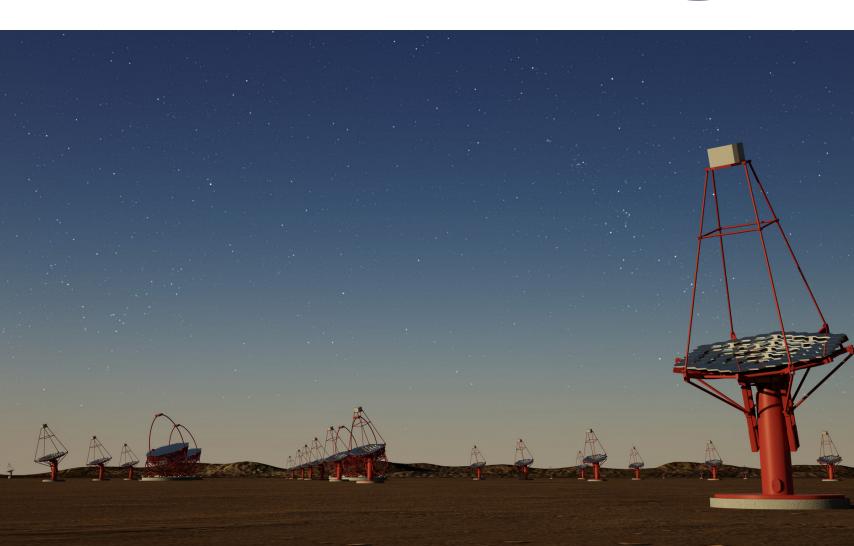


DESY. | Searching for PeVatrons in the Galaxy | I. Oya, Aug 2018 |

HAWC PeVatron Candidates

Andrea Albert @ CIPANP 2018

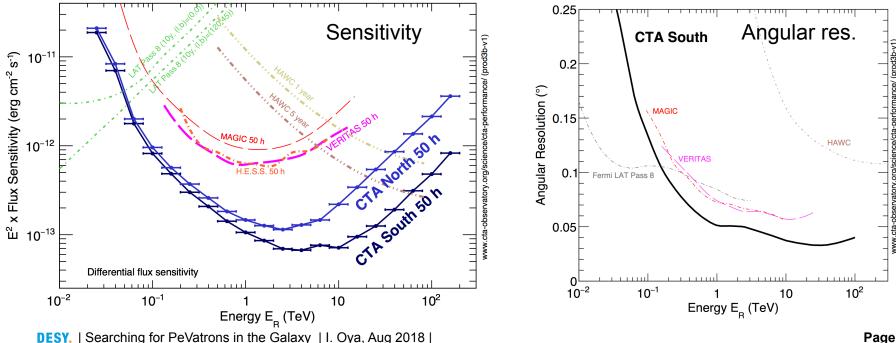
Galactic Plane, > 56 TeV (0.5 degree extended source assumed)



- Preliminary analysis has found high-energy (>56 TeV) sources
 - PeVatron candidates
 - High-energy sources are coincident with pulsars
 - HAWC team is working in spectral fits
- More info on HAWC sources by Hugo Ayala later today

Gamma-Ray Observator

A crucial instrument for PeVatron searches

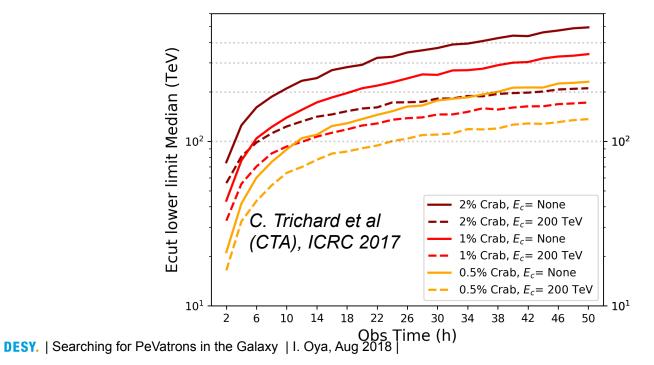


cherenkov telescope array

Enhance sensitivity at higher energies

CTA will, w.r.t. current IACT instruments:

- Enhanced energy range, up to 300 TeV
- Enhanced energy and angular resolution
- Reduce source confusion
- Measure with higher precision spectral features such as spectral cutoffs •



(Cta cherenkov telescope arrav

> More details on talk of S. Funk yesterday

CTA and PeVatron Searches

- Deeper flux and higher angular resolution to study of the GC
- Extend the search of PeVatrons to the >100 TeV range:
 - Use the CTA Galactic Plane Scan as finder and then follow-up brightest sources with no sign of a cut-off
 - Study H.E.S.S. hard spectrum sources and HAWC candidates
 - Determine spectral cutoff lower limits after a dozen of hours

cherenkov

telescope

arrav

Summary and Conclusions (I)

- CR population of Galactic origin around 1 PeV (the knee)
 - SNR traditional candidates as originating places
- TeV gamma-ray emission can trace PeV CRs if:
 - Appropriate spectral characteristics e.g. lack of cutoff at tens of TeV
 - Enough target material e.g. in MCs
- SNRs accelerate CRs, but none detected as PeVatron up to now
 - Could not find evidences of for PeVatron nature in young SNRs
 - Alternative accelerators such as massive star clusters?
- Evidences of a PeVatron at the GC:
 - Interpreted as continuous CR injector over ~ few 1000 yr by Sgr A* Central back hole
 - · Should be more powerful in the past to account for detected CR flux alone
 - Stronger contribution by CR sea?

Summary and Conclusions (II)

- H.E.S.S. hard spectra sources
 - very hard spectra and coincident dense gas regions
 - scenarios where parental population of hadrons extends up to several hundreds of TeV.
 - may be representing a population of CR accelerators active in the Galaxy
 - alternative leptonic interpretations possible
 - issues: sources confusion, low counts, systematics
- Several PeVatron candidates from HAWC, spectral analysis to come
- Are PeVatron candidates detected by H.E.S.S. and HAWC electron or proton accelerators? Are they PeVatrons?
- Promising future for the Galactic CR accelerators study with CTA
- + SGSO (HAWC South) + Lhaaso + EAS Radio Measurements + MWL +...