Interpretation on the coincident observation of VHE neutrino event and a bright flare of TXS0506+056

Shan Gao, Anatoli Fedynitch, Walter Winter and Martin Pohl

based on 1807.04275 For VHEPU18, Qui Nhon, Viet Nam, Aug 16, 2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

The first smoking-gun neutrino (ex-gal.) source ?

IceCube 170922A and blazar TXS0506+056

Figures reconstructed from Fermi-LAT, ApJS, 2017; IceCube, Science, 2013, GCN alert 21916 by IceCube

Multi-messenger observation paper: IceCube et al, Science 361 (2018)

List of follow up papers:

https://icecube.wisc.edu/pubs/neutrino_blazar

Theoretical modeling : this talk, 1807.04275

Illustration of an IceCube neutrino track event. IceCube Collaboration

Observational Chronology

Date	Source	Ву	Content
17/09/23	GCN alert 21916	IceCube	Neutrino track 170922A, RA: 77.43 Dec: 5.72, EHE event selection (~100's TeV), <1 degree angular resolution
17/09/26	GCN alert 21930	Swift	observations started on 09/23, few hours after neutrino, reported 12 sources within 2.1 sqd
17/09/27	ATel #10787	H.E.S.S.	observations lasted for 1h each, on 09/23 (+4h after neutrino) and 09/24. Non-detection.
17/09/28	ATel #10791	Fermi	3FGL source within error circle, 6-fold flux increase during 09/17-27, FAVA shows high-state at 800 MeV shows flaring state [since ~few months]
17/09/28	ATel #10792	Swift	additional monitoring started on 09/27, index -2.5, shows softening and "spectral evolution"
17/09/28	ATel #10794	ASAS-SN	V-band +0.5 mag in few months. Made sure light curve is available. No data during past summer, due to the Sun
17/10/04	ATel #10817	MAGIC	12h between 09/28 – 10/03. 5-sigma detection above 100 GeV
17/10/09	ATel #10833	VERITAS	non-detection: observed location on 09/23 and 09/28-30 for 5h total. Set upper limit.
17/10/12	ATel #10845	Swift + NuSTAR	Joint Swift XRT (09/27++) & NuSTAR (09/29): single power-law model disfavored, double power-law model: soft idx: -3.27, hard idx: -1.51, flux not much higher than previous obs.
17/10/17	Atel #10861	VLA	observations on 10/05,06,09,12 in 6 bands between 2.5 and 11 GHz, spectrum shows variability O(few days)

They are not exactly simultaneous

Theorist's Chronology

Date	Activity	
Oct 2017	Analyzing publicly available data, from ATels and online tools.	
Nov 2017	Analytical analysis - baseline models	Importance of
Dec 2017	Numerical simulations, fit parameters Work presented in DESY	"open data"
Mar 2018	Add model complexities. Work presented in MIAPP workshop. paper submitted to journal.	"Theoretical" follow-ups also don't like delays.
Jul 2018	Work with published data. paper posted on arxiv and new version resubmitted	

See how each "piece" of SED determines or constrains different types of models

Spectral Energy Distribution from public available data

Multi-wavelength Observation

Data reconstructed from IceCube et al, Science 361 (2018)

Zeroth order estimate (easy to understand; most widely used)

Why is this wrong for TXS0506?

Physical explanations of SED

Model geometry illustration

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

The simplest to model the SED, with the least number of parameters

T-dependent numerical code for radiations (AM3)*

*Astrophysical Modeling with Multiple Messengers

$$\partial_t n(\gamma, t) = -\partial_\gamma \{ \dot{\gamma}(\gamma, t) n(\gamma, t) - \partial_\gamma [D(\gamma, t) n(\gamma, t)]/2 \} - \alpha(\gamma, t) n(\gamma, t) + Q(\gamma, t)$$

	injection	escape	synchrotron	inverse Compton	$\gamma\gamma\leftrightarrow\mathrm{e}^{\pm}$	Bethe-Heitler	$p\gamma$
e-	$Q_{e,inj}$	$\alpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{e,IC}, D_{e,IC}, \alpha_{e,IC}, Q_{e,IC}$	$\alpha_{\rm e,pa}, \ {\rm Q}_{\rm e,pp}$	Q_{BH}	$Q_{e,p\gamma}$
e^+	_	$lpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{e,syn}}, \mathrm{~D}_{\mathrm{e,syn}}$	$\dot{\gamma}_{\rm e,IC}, \ {\rm D}_{\rm e,IC}, \ \alpha_{\rm e,IC}, \ {\rm Q}_{\rm e,IC}$	$\alpha_{\rm e,pa}, \ {\rm Q}_{\rm e,pp}$	$Q_{\rm BH}$	$Q_{e,p\gamma}$
γ	_	$\alpha_{ m f,esc}$	$\alpha_{\rm f,ssa}, {\rm Q}_{\rm f,syn}$	$\alpha_{\rm f,IC}, \ {\rm D}_{\rm f,IC}$	$\alpha_{\rm f,pp}, \ {\rm Q}_{\rm f,pa}$	$lpha_{ m f,BH}$	$\alpha_{\rm f,p\gamma}, \ {\rm Q}_{\rm f,p\gamma}$
p	$Q_{p,inj}$	$\alpha_{ m e,esc}$	$\dot{\gamma}_{\mathrm{p,syn}}, \mathrm{D}_{\mathrm{p,syn}}$	$\dot{\gamma}_{\rm p,IC} {\rm D}_{\rm p,IC}, \; \alpha_{\rm p,IC}, \; {\rm Q}_{\rm p,IC}$	_	$\dot{\gamma}_{\mathrm{p,BH}}, \mathrm{D}_{\mathrm{p,BH}}$	$\alpha_{\mathrm{p,p\gamma}}, \ \mathrm{Q}_{\mathrm{p,p\gamma}}$
n	_	$\alpha_{ m f,es}$	_	_	_	_	$\alpha_{n,p\gamma}, Q_{n,p\gamma}$
ν	_	$\alpha_{ m f,es}$	_	_	_	_	$Q_{\nu,p\gamma}$

- Numerically solve coupled equations for above particles and interactions
- Energy "bandwidth" : Radio UHECR
- Efficient: 0.5 min per leptonic simulation, 2 min hadronic
- Photo-hadronic interactions following Hümmer et al., ApJ 712, 2010

Description of physics and the code, see SG, Martin Pohl and Walter Winter, ApJ, 2017

Leptonic model

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

Fits SED, but no neutrinos

Hadronic model, a parameter scan

We have scanned the physically reasonable choices of the blob radius $10^{14} < R < 10^{18}$ cm and found none of the above diagrams has an overlapping region of the four colors.

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

Ruled out

Proton synchrotron model, a similar parameter scan

The 4th possibility - hybrid model

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

Go time-dependent : flare and quiescent state

- Quiescent state produce by a persistent steady-state from a large blob R=10^17 cm
- Flare produced by boosted acceleration, dissipation of an inner core R=10^16 cm
- Quiescent state : almost no neutrinos; Flare state : 0.27 /yr — 2σ compatibility with observation.
- Atmospheric v background low, 0.001/yr

GeV TeV PeV eV keV MeV -9 Flare Quiescent log₁₀(*E*²dN/dE / erg cm⁻²s⁻¹) GeV-v -10 Optical Flux corresponding to one v_{ii} in IceCube per 1/2 yr TeV-v -11 -12 -13└-10 15 20 25 30 log₁₀(Frequency/Hertz)

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

• S/N ratio significance ~ 2.9σ

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

Lessons learned from modeling this source

• Consider the two constraints: x-ray luminosity L_x and physical jet luminosity L_jet

L_x	L_jet
fixed by observation; neutrino yield described by L_nu = k L_x where k is related to fullness of cascade	unknown; but cannot exceed too much of L_Eddington of SMBH of high mass end
proton interaction rate cannot be too high, otherwise too much cascade decreases k and L_nu	proton interaction rate cannot be too low, otherwise needs a big load of L_p>>L_jet to produce neutrinos
favors a compact dense source	favors a large dilute source

- The sweet spot (our baseline model) yields 0.27/yr
- There is no such model with a simple geometry to yield 1 neutrino / flare and to observe both L_x and L_jet constraints.

Alternative attempts

Try a higher Ep,max

- + Fits SED, neutrino rate and be consistent with L_jet
- Not compatible with observed neutrino E (too high)

See also Cerruti et al. 1807.04335

Try a larger blob R=10^17 cm

- + Simple geometry, one-zone model
- + Remarkably simple assumption to describe both quiet and flare state: flare = L_injection x 3 of quiet
- L_flare exceeds L_jet by hundreds

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

SG, A. Fedynitch, M. Pohl, W. Winter, arxiv: 1807.04275

Alternative attempts

Try a more complicated geometry

The MAGIC collaboration, 1807.04300

+ Structured jet model (spine + sheath). Protons and target photons from different zones, see each other with relativistic boost to enhance the reaction rate.

- These structures needs to be stably extended to ~100 pc to maintain the flare.

Liu et al, 1807.05113

+ Independent two-zone model. Clouds in the broad line region to block X-ray and γ -rays. Fits SED and predicts a neutrino flux compatible with observation.

– Leptonic emission from outside the torus. Neutrino emission and γ -ray flare not correlated.

 Needs extreme column density of clouds; needs fine tuned geometry and specific viewing angle (to see photons from certain bands and block them from certain bands, etc.)

Conclusions

- No simple one-zone model works. Pure hadronic interpretation of γ -rays excluded.
- Pure leptonic SSC fits SED.
- A hybrid model predicts 0.3/yr flare state (2 σ compatibility) , ~ 0/yr quiet state, S/N significance $\sim 2.9\sigma$
- The hybrid model explains well the trend of observation. X-ray ~ TeV ~ Neutrino correlation.
- While neutrino astronomy just about to take off, this event demonstrates :

Multi-wavelength & neutrino observations + "open data" + sophisticated theoretical models = ground-breaking multi-messenger astronomy

BACKUP SLIDES

Padovani et al, 2018, MNRAS

Background figure taken from Fig.2, Ghisellini et al, MNRAS 2017

Parameter	Description	Fit	Hybrid		Hadronic
			Quiescent	Flare	Flare
z	Redshift	fixed	0.34		0.34
$B'(\mathbf{G})$	Magnetic field		0.008	0.17	2.0
$R'_{\rm blob}$ (cm)	Blob size		$10^{17.5}$	10^{16}	10^{16}
$\Gamma_{ m bulk}$	Doppler factor		28.5		20.0
$L'_{e,\text{inj}}$ (erg/s)	Electron injection luminosity		$10^{40.5}$	$10^{41.0}$	$10^{41.3}$
$\alpha_{e,1}$	Electron lower spectral index		-1.3	-1.2	_
$\alpha_{e,2}$	Electron upper spectral index		-1.7	-1.7	-2.3
$\gamma'_{e,\min}$	Min. electron Lorentz factor		$10^{3.3}$	$10^{4.1}$	$10^{3.3}$
$\gamma'_{e,\mathrm{br}}$	Electron break Lorentz factor		$10^{4.3}$	$10^{4.3}$	_
$\gamma'_{e,\max}$	Max. electron Lorentz factor		$10^{5.2}$	$10^{4.7}$	$10^{4.4}$
$L'_{p,\text{ini}}$ (erg/s)	Proton injection luminosity		$10^{44.6}$	$10^{45.6}$	$10^{47.0}$
$\gamma'_{p,\min}$	Min. proton Lorentz factor	fixed	10.0		10.0
$\gamma'_{p,\max}$	Max. proton Lorentz factor		$10^{5.3}$		$10^{5.6}$
α_p	Proton spectral index	fixed	-2.0		-2.0
$\eta_{ m esc}$	escape velocity of e^{\pm} and p		c/300	c/300	c/10
Results					
$L_{\rm Edd}$ (erg/s)	Eddington luminosity *		$10^{47.8}$		$10^{47.8}$
$L_{\rm jet}/L_{\rm Edd}$	jet physical luminosity (in L_{Edd})		0.5	5.0	62.8
$E_{\nu,\mathrm{peak}}, \mathrm{TeV}$	peak energy of neutrino spectrum		220	220	330
N_{ν}/yr	Expected neutrino rate in IceCube		$10^{-3.8}$	0.23	9.8

