Neutrino/gamma-ray connections on blazars: IceCube-170922A and TXS 0506+056

16 August 2018 "Very High Energy Phenomena in the Universe 2018" @Quy Nhon <u>Masaaki Hayashida (Konan Univ.)</u> for the Fermi-LAT collaboration++ (16 teams)

Outline

- 1. Introduction:
 - 1. Blazars as high-energy source
 - 2. Fermi transient search (ASP, FAVA)
- 2. IceCube-170922A/TXS0506+056
 - 1. Story to the discovery of the counterpart
 - 2. Multi-wavelength follow-up observations
 - 3. Chance coincidence calculation
 - 4. Gamma-ray band at the time of "neutrino flare" in the late 2014

Blazars: Active Galactic Nucleus Jets

- BL Lac type: weak disk (almost no optical line)
- Flat Spectrum Radio Quasar: luminous disk

High-energy astrophysical sources

blazar is the most dominant HE γ -ray source

Origin of blazars emission

Leptonic models: synchrotron + inverse-Compton

the leptonic models successfully explain SED results (mostly one-zone is fine, some for 2-zones, spine-sheath)

Searching for cosmic-ray origin

High-energy neutrinos are produced via interaction between cosmic rays and ambient photons (py) or protons (pp)

LAT blazars and IceCube event correlations

LAT blazars (steady emission) seem <u>not</u> to be dominant source for the neutrino origin → let's focus on transients (flares)

Possible association of PeV neutrino with high fluence GeV blazar PKS 1424-418 (z=1.522)

4 December 2011: 2 PeV

- Cascade event of error radius of ~10 deg (17 γ-ray blazars inside)
- ~5% chance probability

Table 1 | Maximum-possible number of petaelectronvolt-neutrino events in 36 months (988 days live-time) of IceCube data for the 17 2LAC γ-ray blazars in the field of the 2 PeV IceCube event based on 2LAC catalogue γ-ray spectra and contemporaneous X-ray data.

2FGL name	Common name	F_{γ} (erg cm ⁻² s ⁻¹)	N ^{max} _{v,Pe}
2FGL J1230.2-5258	PMN J1229-5303	$(2.4^{+1.5}_{-1.5}) \times 10^{-11}$	0.14
2FGL J1234.0-5733	PMN J1234-5736	$(1.1^{+0.4}_{-0.4}) \times 10^{-11}$	0.06
2FGL J1303.5-4622	PMN J1303-4621	$(1.9^{+0.6}_{-0.6}) \times 10^{-11}$	0.11
2FGL J1303.8-5537	PMN J1303-5540	$(1.04^{+0.11}_{-0.11}) \times 10^{-10}$	0.38
2FGL J1304.3-4353	1RXS 130421.2-435308	$(2.11^{+0.25}_{-0.25}) \times 10^{-11}$	0.12
2FGL J1307.5-4300	1RXS 130737.8-425940	$(8.4^{+1.7}_{-1.7}) \times 10^{-12}$	0.05
2FGL J1307.6-6704	PKS B 1304-668	$(1.54^{+0.15}_{-0.15}) \times 10^{-10}$	0.89
2FGL J1314.5-5330	PMN J1315-5334	$(8.1^{+0.9}_{-0.9}) \times 10^{-11}$	0.47
2FGL J1326.7-5254	PMN J1326-5256	$(1.04^{+0.21}_{-0.18}) \times 10^{-10}$	0.59
2FGL J1329.2-5608	PMN J1329-5608	$(1.38^{+0.36}_{-0.29}) \times 10^{-10}$	0.93
2FGL J1330.1-7002	PKS B 1326-697	$(1.53^{+0.11}_{-0.11}) \times 10^{-10}$	0.89
2FGL J1352.6-4413	PKS B 1349-439	$(5.4^{+1.0}_{-1.0}) \times 10^{-11}$	0.32
2FGL J1400.6-5601	PMN J1400-5605	$(6.9^{+0.8}_{-0.8}) \times 10^{-11}$	0.40
2FGL J1407.5-4257	CGRaBS J1407-4302	$(1.6^{+0.5}_{-0.5}) \times 10^{-11}$	0.09
2FGL J1428.0-4206*	PKS B1424-418*	$(2.04^{+0.17}_{-0.16}) \times 10^{-10*}$	1.57*
2FGL J1508.5-4957	PMN J1508-4953	$(7.6^{+3.0}_{-2.3}) \times 10^{-11}$	0.55
2FGL J1514.6-4751	PMN J1514-4748	$(5.6^{+0.6}_{-0.6}) \times 10^{-11}$	0.32
Sum (2LAC)			7.9

Kadler+16

Fermi Transient Searches

Timescale Transients

LAT Automated Science Processing (ASP) +Flare advocate

- Flare Advocate run the daily (1-day and 6-hour data) analysis script and check the ASP result
- Once transient objects are found, Astronomers Telegram is issued (typically, flux >1.0x10⁻⁶ photons/cm²/s for E>100 MeV)¹⁰

Fermi All sky Variability Analysis (FAVA)

- For Weekly-binned data
- Comparison of observed counts with average (expected) counts
- E>100 MeV, E>800 MeV
- aperture photometry
 (↔ max. likelihood fit for the
 standard analysis.)
- Crab nebula flare is first detected by this analysis

$$N^{exp}(\phi, \theta) = \sum_{E:j=1..12} \sum_{\alpha:i=1..4} N^{tot}_{i,j}(\phi, \theta) imes rac{\epsilon^{week}_{i,j}(\phi, heta)}{\epsilon^{tot}_{i,j}(\phi, heta)},$$

FAVA webpage

- <u>https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/LightCurve.php</u>
- Automatic production of light curve at any locations (RA, Dec)

Real time Alert IceCube events (since April 2016)

9 HESE events: https://gcn.gsfc.nasa.gov/amon_hese_events.html

EventNum_RunNum	Date	Time UT	Туре	RA(deg)	Dec(deg)	Err(min)	charge	Sig_Tr
<u>71165249_130949</u>	18/04/23	02:28:40.98	HESE	294.882	+71.953	534.0	13631.	0.34
34032434_130171	17/10/28	08:28:14.81	HESE	275.076	+34.501	534.0	6317.	0.30
56068624_130126	17/10/15	01:34:30.06	HESE	162.579	-15.861	73.79	13906.	0.51
<u>32674593 129474</u>	17/05/06	12:36:55.80	HESE	221.675	-26.036	73.79	8685.	0.35
<u>65274589_129281</u>	17/03/12	13:49:39.83	HESE	304.730	-26.238	73.79	8858.	0.78
<u>38561326_128672</u>	16/11/03	09:07:31.12	HESE	40.825	+12.559	66.00	7546.	0.30
<u>58537957_128340</u>	16/08/14	21:45:54.00	HESE	199.310	-32.016	89.39	10431.	0.12
6888376_128290	16/07/31	01:55:04.00	HESE	215.109	-0.458	73.79	15814.	0.91
<u>67093193_127853</u>	16/04/27	05:52:32.00	HESE	240.568	+9.342	35.99	18883.	0.92

6 EHE events: https://gcn.gsfc.nasa.gov/amon_ehe_events.html

EventNum_RunNum	Date	Time UT	Туре	RA(deg)	Dec(deg)	Err(min)	Signalness
17569642_130214	17/11/06	18:39:39.21	EHE	340.250	+7.314	14.99	0.745
<u>50579430_130033</u>	17/09/22	20:54:30.43	EHE	77.285	+5.752	14.99	0.565
80305071_129307	17/03/21	07:32:20.69	EHE	98.327	-14.486	19.48	0.280
80127519_128906	16/12/10	20:06:40.31	EHE	45.855	+15.785	14.99	0.490
26552458_128311	16/08/06	12:21:33.00	EHE	122.798	-0.733	6.67	0.280
<u>6888376_128290</u>	16/07/31	01:55:04.00	EHE	214.544	-0.335	20.99	0.849

No significant γ-ray counterpart was found by the Fermi-LAT team (e.g., ATel #9303, GCN #20269), **but expect for one**

IceCube-170922A

(IceCube, Fermi-LAT, MAGIC++Coll. 2018 Science, aat1378)

EHE alert: 2017/9/22 20:54:30 UTC energy estimation

Story to the discovery of the counterpart - 1

- The IceCube event error region includes 7 blazar candidates
 - Blazar Radio and Optical Survey (BROS: Itoh+, in prep): 56,315 srcs Dec >-40°
 - (a few 100 variable optical sources per 1deg²)
- Observed all those blazars candidates with Subaru/HSC, Kiso/KWFC and Kanata by optical teams in Japan
 - Covered almost the entire error region Kiso/KWFC

Story to the discovery of the the counterpart - 2

The quick optical follow-up by Kanata

PI: Y. Tanaka (Hiroshima Univ.)

R-band Kanata/HONIR (Hiroshima Univ.)

- One of the 7 blazars (=TXS 0506+056) showed significant variability (fading)
- Bright optical state among historical records

→ Let's check LAT data

Story to the discovery of the the counterpart - 3

Fermi-LAT data for TXS 0506+056

Light curve (>800 MeV) from FAVA (9+year: 2008 Aug.8 – 2017 Oct.)

Y.Tanaka+ (Fermi-LAT) Atel #10791

[Previous | Next | ADS]

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the lceCube-170922A error region.

ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David J.Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942

Tweet Recommend 3

We searched for Fermi-LAT sources inside the extremely high-energy (EHE) IceCube-170922A neutrino event error region (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3, see also ATels 10773, 10787) with all-sky survey data from the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We found that one Fermi-LAT source, TXS 0506+056 (3FGL J0509.4+0541 and also included in the 3FHL catalog, Ajello et al., arXiv:1702.00664, as 3FHL J0509.4+0542), is located inside the IceCube error region. The FAVA (Fermi All-sky Variability Analysis) light curve at energies above 800 MeV shows a flaring state recently (https://fermi.gsfc.nasa.gov/ssc/data/access/lat/FAVA/SourceReport.php?week=477&flare=27). Indeed, the LAT 0.1--300 GeV flux during 2018 September 15 to 27 was (3.6+/-0.5)E-7 photons cm-2 s-1 (errors are statistical only), increased by a factor of ~6 compared to the 3FGL flux, with nearly the same power-law index of 2.0+/-0.1. We strongly encourage multiwavelength observations of this source. We also encourage optical spectroscopy for this source, because the redshift is still unknown. According to NED, the R-band magnitude is reported as 15.1 (Healey et al. 2008, ApJS 175, 97). Radio observations show that this blazar has had increasing flux during the past year: http://www.astro.caltech.edu/ovroblazars/data.php?page=data_query, http://www.physics.purdue.edu/astro/MOJAVE/sourcepages/0506+056.shtml.

TXS 0506+056 (z=0.3365)_(Paiano+18)

- (RA, Dec) = $(05h09m25.964 + 05^{\circ}41'35''.33)$
- BL Lac, Intermediate Spectral Peaked (ISP) [log(v_{sync}[Hz])~14.2]
- LAT source: 3FGL J0509.4+0541, 2FHL J0509.5+0541
- Bright radio source: a MOJAVE (15GHz VLBI) monitoring source

High-energy γ-ray light curve

VHE γ -ray observations

Detection of >90 GeV γ -ray by MAGIC

MAGIC observations: ~13 hrs MAGIC skymap 6 Date Effective time Flux > 90 GeVSignificance 5 $[10^{-11} \text{ cm}^{-2} \text{ s}^{-1}]$ MJD [hours] MAGIC significance [σ] σ 4 58020.16 1.07 <3.56 0 3 58024.21 1.25 < 6.15 1.8 2.9 58025.18 < 5.80 1.0 58026.17 3.0 <3.56 0.95

58027.18

58028.23

58029.22

58030.24

2.9

0.8

1.3

0.65

(more detections from 41 hrs to 2017 Nov.: Ansoldi+18)

 1.91 ± 1.18

< 5.78

 5.86 ± 1.50

 8.02 ± 2.05

IC170922A

2.5

1.7

4.3

5.4

at MJD 58018.87

HESS observations: ~4hr (<i>non detection</i>)							
MJD		Observation time	E_{\min}	$dN_{95\%{ m C.L.}}(E>E_{ m min})$			
	[days]	[h]	[TeV]	$[\mathrm{ph}/\mathrm{cm}^{-2}\mathrm{s}^{-1}]$			
57	7286 - 57287		0.175	$< 5.4 imes 10^{-12}$			
57	7366 – 57382		0.175	$< 5.4 imes 10^{-12}$			
	58019.07	1.35	0.175	$< 1.0 imes 10^{-11}$			
	58024.08	0.48	0.175	$< 1.8 \times 10^{-11}$			
	58025.08	1.65	0.175	$<1.8\times10^{-11}$			

TXS 0506

6.6°

6.2°

Declination 8°5

5.4

5.0°

4.6°

78.4

VERITAS observations: 5.5hrs (*non detection*)

MJD	Time window (half width)	F(E > 175 GeV)
[days]	[days]	$[\text{ph cm}^{-2} \text{ s}^{-1}]$
57685.4392	± 0.0104	$< 6.8 imes 10^{-12}$
57686.4500	± 0.0200	$< 5.7 imes 10^{-12}$
57786.1544	± 0.0142	$< 1.1 imes 10^{-11}$
58019.3971	± 0.0124	$<2.1 imes10^{-10}$
58024.4380	± 0.0653	$< 1.4 imes 10^{-11}$
58025.3932	± 0.0219	$< 5.2 imes 10^{-11}$
58026.4399	± 0.0211	$<1.1\times10^{-11}$

 $(5.8\sigma \text{ from 35hr to 2018 Feb.: Abeysekara+18})$ 19

Multi-wavelength light curve

Flux enhancements can be seen in all waveband (but no short time flare at the event)

Summary of follow-up observations

Observations obtained within 14 days of IceCube-170922A

- Radio: VLA (Oct5: 2-12 GHz :Atel#10861), OVRO (15 GHz: monitoring)
- NIR/Optical/UV: Kanata (Sep23: *R*-band, Atel#10844),
 Kiso (Sep23: *g*-band), SARA (Sep29: *B,V,R*: Atel#10831), ASAS-SN (Sep23, *V*-band, Atel#10794), Swift-UVOT (Sep27, M2,W1,W2, U,V, B)
- X-ray: Swift-XRT (Sep27-30: 0.3-10 keV Atel#10792) Γ=2.78±0.30, NuSTAR (Sep29: 3-79 keV, Atel#10845) Γ=1.43±0.43, INTEGRAL(UL:20-250 keV) GCN#21917)
- HE gamma-ray: Fermi-LAT (Sep 9 Oct 6, Atel#10791) Γ ~2, AGILE (Sep10-Sep23, Atel#10801) Γ ~2,
- VHE gamma-ray: MAGIC (Sep28 Oct4: 80-400 GeV, Atel#10817) Γ =3.9±0.4, VERITAS (UL: >175 GeV, Atel#10833), HESS(UL: >175 GeV, Atel#10787), HAWC(UL:>1 TeV, Atel#10802)

Broad Band SED

(color points: obtained within 14 days of the IC170922A event)

Broad Band SED

(color points: obtained within 14 days of the IC170922A event)

SED interpretations will be talked by Shan Gao (the next talk) (Also by Susumu Inoue, yesterday)²³

Chance coincidence probability

There are more than 2000 extra-galactic gamma-ray sources in the sky. That "coincidence" might be just by chance.

Check the hypothesis that *"there is a correlation between the neutrino event and the gamma-ray emission in space and time"* using a likelihood ratio test

Chance coincidence probability

number of sources in the error circle

Likelihood function

$$\mathcal{L} = \prod_{i}^{N} \left(\frac{n_s}{N} \mathcal{S} + (1 - \frac{n_s}{N}) \mathcal{B} \right)$$

Assuming N events observed n_s=1 for the signal case

 $n_s=0$ for the background case

• S and B are signal and background PDFs

$$\mathcal{B}(\vec{x}) = Spacial(\sin\theta) \times Energy(E_{reco}, \sin\theta)$$

Test Statistic

$$TS = 2\log\frac{\mathcal{L}(n_s = 1)}{\mathcal{L}(n_s = 0)} = 2\log\frac{\mathcal{S}}{\mathcal{B}}$$

pseudo-search trial using scrambled sample

Chance coincidence : temporal (flux)

$$\mathcal{L} \propto \mathcal{L}_{spatial} \cdot \mathcal{L}_{flux}$$

Flux (LAT γ-ray) data sample:

- All extragalactic and unID (lbl>5deg) sources from 3FGL and 3FHL sources → 2257 sources (in total)
- Derived 9.2-year light curves (2008/Aug 2017/Oct) with 28-day bin and >1 GeV

Chance coincidence probability

$$TS = 2\log \frac{\mathcal{L}(n_s = 1)}{\mathcal{L}(n_s = 0)} = 2\log \frac{\mathcal{S}}{\mathcal{B}}.$$

TS distribution:

Background trials (blue) Signal trials (orange) the TXS0506 event (red)

Probability: Pre-trial : 4.1σ (~2.1x10⁻⁵)

Number of alerts:

10 alert events (since 2016/Apr) 41 archival events (since 2010 before the alert system started)

After the trial factor correction (including the 51 events)

In the past IceCube data for TXS 0506+056

(IceCube Coll. 2018 Science aat2890)

Right Ascension

In the past IceCube data for TXS 0506+056

(IceCube Coll. 2018 Science aat2890)

Detailed look of the Gamma-ray band

(Padovani+18 MNRAS, 480)

showed a flaring state at the time of neutrino flare

Detailed look of the Gamma-ray band

(Padovani+18 MNRAS, 480)

Summary

- Blazar is the most dominant high-energy γ -ray sources
- Emission origins can be explained by leptonic models
- No significant correlations were found between the IceCube v events and the LAT γ -ray blazars (for steady emission)
 - Blazars seem not to be dominant source of the neutrino origin
- EM follow-up observations have been organized well for the IceCube Neutrino Alert
- IceCube-170922A: a flaring γ -ray blazar TXS 0506+056
 - ~290 TeV v, 5 time higher >100 MeV $\gamma, \ >100$ GeV γ detection
 - Chance coincidence: 4 σ (pre-trial), 3 σ (post-trial: 51 events)
 - Also, a neutrino flare in late 2014
 - in the high-energy γ -ray band the low flux, but hard spectrum

beginning of the neutrino multi-messenger Astronomy.

New Blazar Catalog (BROS)

(slide from Morokuma)

- Blazar Radio and Optical Survey (BROS; Itoh et al. in prep.)
- □ 56,315 sources at Dec.>-40 deg
 - □ ROMA-BZCAT: 3,516 sources
 - CRATES: ~11,000 sources
 - □ 3FGL (Fermi): ~1,500 sources
- flat-spectrum@radio: NVSS (1.4 GHz) + TGSS (151 MHz)
- Pan-STARSS(PS1)@optical

 \sim ~40% not detected in PS1 (r>23)

objects in optical wavelengths

- **D** non-transient: $O(10^{5-6}) \text{ deg}^{-2}$ (Furusawa+2008)
- transient: O(10²) deg⁻² (TM+2008)
 - 🗆 variable star
 - □ [high proper motion star]
 - 🗆 [asteroid]
 - 🗆 supernova (SN)
 - 🗆 active galactic nuclei (AGN)
 - □ gamma-ray burst (GRB)
 - 🗆 fast radio burst (FRB): Parkes, ...
 - Gravitational Wave source (kilonova)
 - neutrino source

Emission from blazars

Leptonic origin models are successful for most cases → no exclusive evidence of hadronic origin emission

wide energy range: radio to VHE γ-ray

inverse-Compton

In the past IceCube data for TXS 0506+056

(IceCube Coll. 2018 Science aat2890)

Fermi Gamma-ray Space Telescope

Large Area Telescope (LAT)

- 20 MeV-300 GeV

survey

- Launched on 2008 June 11
- Continue to observe without any critical problems
- All sky survey mode

All-sky survey-mode observation

Thanks to the large FoV of 2.4 str, LAT scans all-sky every 3 hours 1 Orbit (i.e., 2 orbits) and perform unbiased

\rightarrow good for monitoring variable sky every days