The ANTARES neutrino telescope:

main results and perspectives for KM3NeT

Sergio Navas University of Granada, Spain

UNIVERSIDAD DE GRANADA

KM3Ne

On behalf of the ANTARES and KM3NeT Collaborations

14th Rencontres du Vietnam: Very High Energy Phenomena in the Universe Quy Nhon, Vietnam, August 12–18, 2018

Neutrino Astrophysics

- Origin and acceleration of Cosmic Rays ?
- Neutral messengers point back to their sources
 - \checkmark neutrons are short-lived, photons are likely to interact \rightarrow neutrinos
- **CR** interactions produce neutrinos in meson decays
 - Search for a diffuse flux from unresolved sources
 - Search for individual sources
 - Multi-messenger approach for neutrino astronomy

Mediterranean Neutrino Telescopes

Physics Motivation and Detection Principle

- > High energy v astronomy and neutrino properties
- Detection: large volume of transparent medium surveyed by photodetectors

Location: Northern Hemisphere

- Complementary to IceCube
- Golden channel for Southern sky sources. "Milky-Way optimized"

Medium: Deep Sea Water

- Very small light scattering (good angular resolution)
- Natural backgrounds (⁴⁰K and bioluminescence) can be handled.

Neutrino detection principle

Mediterranean v telescopes

ANTARES: ~10 Mt instrumented mass. Completed in 2008

KM3NeT: A distributed research infrastructure with <u>2 main physics topics</u>: ORCA & ARCA

Low-energy (~GeV) studies of atmospheric neutrinos

High-energy (TeV-PeV) neutrino astrophysics

Physics Studies with Mediterranean v telescopes

Physics Studies with Mediterranean v telescopes

Rencontres du Vietnam VHEPH 2018

Connections to Earth and Sea sciences

✓ BIOLUMINESCENCE

PLOS ONE 8 (7) 2013 Deep-sea bioluminescence blooms after dense water formation at the ocean surface

✓ SEDIMENTS

Journal Geophysical Research: Oceans, Vol 122, 3, 2017 Deep sediment resuspension and thick nepheloid layer generation by open-ocean convection

✓ ACOUTICS

Deep-Sea Research I 58 (2011) 875–884 Acoustic and optical variations during rapid downward motion episodes in the deep North Western Mediterranean

✓ SEA MAMALS BEHAVIOUR

Sci. Rep. 7 (2017) 45517 Sperm whale long-range echolocation revealed by ANTARES, a deep-sea neutrino telescope

Gean Dynamics, April 2014, 64, 4, 507-517 High-frequency internal wave motions at the ANTARES site in the deep Western Mediterranean

9

KM3NeT Technology

- All data to shore
- Gbit/s on optical fiber
- Hybrid White Rabbit
- LED flasher & hydrophone
- Tiltmeter/compass

String (Detector Unit)

- Polyethylene ropes
- Oil filled PVC tube
- Low drag

ternal to DOM)

Low cost

Deployment Vehicle

- Unfurling by autonomous ROV
- Reusable

 Rapid deployment Multiple strings in

KM3Ne1

KM3NeT

KM3Ne

KM3NeT first Detection Units

DOM in ANTARES site

- o April 2013, 2.500 m
- Muons from a single DOM
- Mini-string in ARCA site
 - o May 2014, 3.500 m, 3 DOMs
 - Muon reconstruction, angular distribution

Watch <u>https://www.youtube.com/watch?v=tR8jwgG6uzk</u> <u>https://youtu.be/7HKHW0hLxt4?t=44s</u>

• Two full strings in ARCA site

First string in ORCA site

Calibration Procedures

Sergio Navas (U. Granada)

KM3NeT

KM3NeT status

ARCA

- Dec 2015 May 2016, 3 strings deployed
- o string #3 with short in power system ← recovered
- o Improvements in seabed networking on-going
- String deployment will resume by mid-2019
- ORCA
- First string deployed in September 2017
- Cable problem, replacement in summer 2018

Reconstruction Performances (1/2): "tracks"

Tracks (v_{μ} CC) ideal tool for astronomy

- Excellent angular resolution + Large effective volume
- Larger atmospheric background

Ang. Resol. < 0.2° above 10 TeV Energy Resol. ~ 0.27 in $\log_{10}(E_{reco}/E_{\mu})$ (10 TeV < E_µ < 10 PeV)

CC v_{μ}

Reconstruction Performances (2/2): "Showers"

Shower events also used for astronomy

- ↔ Contained events → Better energy resolution
- Almost no atmospheric background

Angular Res. < 3° (1 TeV < E < 0.5 PeV) Energy Res. for v_e CC better than 10% Shower confined within ~10 m (long)

Angular Res. < 2° above 50 TeV Energy Res. < 5 %

Diffuse Flux : Full sky + all flavor search

Data Sample 2007 – 2015 (2450 days)
All sky / All-flavour v search
Unblinding:

Eve	Events		tracks		showers	
Observed:	33	=	19	+	14	
Expected:	24	=	13.5	+	10.5	

Results compatible with IceCube diffuse flux:

Cosmic MC (Γ=2) Cosmic MC (Γ=2) Cosmic MC (Γ=2.5) TRACK EVENTS 10² 10²

* 1.6 σ excess

No-signal hypothesis excluded at 85% CL

Diffuse Flux : Full sky + all flavor search

Data Sample 2007 – 2015 (2450 days)
All sky / All-flavour v search
Unblinding:

Best fit (1 flavour flux normalization at 100 TeV)

- Flux: $\Phi_0(100 \text{ TeV}) = (1.7 \pm 1.0) \times 10^{-18} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- Spectral index: Γ= 2.4 ^{+0.5}_{-0.4}

KM3NeT Diffuse Flux : Full sky

KM3NeT

Track channel

Analysis for upward-going events based on a maximum likelihood Pre cuts on θ_{zenith} , Λ reconstruction quality parameter and N_{hit} (proxy for muon energy)

Shower channel

Containment cut on reconstructed vertex to remove atm. muons (excludes 100 m layer) All sky analysis based on BDT and maximum likelihood

KM3NeT 2.0 can observe

(3σ) IceCube signal in3 months

and confirm it (5σ) in six months

Expected events per year Tracks: 6 signal / 4 bkg. Showers: 18 signal / 9 bkg.

Diffuse Flux : Galactic Ridge

- Data: 2007 2015 (2424 livedays)
 KRAγ " gamma model " assumed as reference
 Likelihood (signal + bkg.)
- No excess observed in data → $UL^{90\% CL} = 1.2 \times \Phi_{ref}$ ($E^{p}_{cut-off} = 50 \text{ PeV}$)

PDF according to KRAy model

Combined ANTARES + IceCube analysis ⇒ The v flux produced by Galactic CR interactions with gas cannot explain by itself the IceCube "spectral anomaly"

ANTARES : Point Sources

"First all-flavor (v_µ tracks + showers) and all-sky neutrino point-like source search"

- ANTARES Data: 2007 2015 (2424 days livetime)
 - \rightarrow 7629 tracks + 180 showers
- \circ Full sky (steps of $1^{\circ} \times 1^{\circ}$, no source assumption)
- 106 sources (galactic + extra-galactic)
- 13 IceCube HESE events (μ track candidates)
- Galactic Center Region (Ellipse 15°×20°)

Showers

Semi axis: Galactic longitude 20°, latitude 15° Sergio Navas (U. Granada)

-60

GC Search region

RA $[\alpha]$

Dec $[\delta]$

+30

24h

-30

 $+60^{\circ}$

ANTARES : Point Sources

Full sky

Most significant cluster (α, δ) = (343.8°, 23.5°) Post-trial significance: 5.9% or 1.9 σ Upper limit on the neutrino flux: E²d ϕ /dE = 3.8 x 10⁻⁸ GeV cm⁻² s⁻¹

13 HESE tracks

Most significant cluster: $(\alpha, \delta) = (130.1^\circ, -29.8^\circ)$ at a distance of 1.5° from the HESE track with ID 3 Post-trial significance: 20% or 1.3 σ Upper limit on the neutrino flux: $E^2d\phi/dE = 2.1 \times 10^{-8}$ GeV cm⁻² s⁻¹

Galactic Centre

 $(\gamma = 2.1, 2.3, 2.5)$ $(\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ})$ $(\alpha, \delta) = (273.0^{\circ}, -42.2^{\circ})$ E^{-2.5} spectrum point-like source Post-trial significance: 30% or 1.0 σ

Candidate List:

Most significant cluster: HESSJ0632+057 (α, δ) = (98.24°, 5.81°) Post-trial significance: 13% or 1.5 σ Upper limit on the neutrino flux: E²d ϕ /dE = 2.4 x 10⁻⁸ GeV cm⁻² s⁻¹

Galactic Centre

Spec indices $\gamma = 2.1, 2.3, 2.5$ Extension $\sigma = 0.5^{\circ}, 1.0^{\circ}, 2.0^{\circ}$ Most significant cluster: $(\alpha, \delta) = (257.4^{\circ}, -41.0^{\circ})$ for a E⁻² spectrum + point-like source Post-trial significance: 60% or 0.5σ

Sagittarius A*:

 $(\alpha, \delta) = (266.42^\circ, -29.01^\circ)$ Point-like source ($\sigma = 0^\circ$) and Extended source ($\sigma = 0.5^\circ, 1.0^\circ, 2.0^\circ$) Largest excess as point-like Pre-trial significance: 22% or 1.2 σ

Sergio Navas (U. Granada)

No significant cluster found

Sensitivities and upper limits at a 90% CL on the signal flux from the full-sky and the Candidate List searches

KM3NeT: Expectations for point-sources

- Sensitivity for 6 yrs of observation with ARCA (2 building blocks)
- □ Broad coverage. E⁻² spectrum assumed.

Sensitivity for Galactic sources

PoS (ICRC2017) 999

KM3Ne¹

Dark Matter Searches

- Gravitational trapping and accumulation of DM particles in the center of massive astrophysical objects like the Galactic Center, the Sun core or the Earth nucleus.
- □ Searches for a possible v_{μ} excess from these objects due to DM annihilation \Rightarrow very clean signature with no significant astrophysical background expected
- Explored Signal channels:

 $WIMP + WIMP \rightarrow b\overline{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu_{\mu}\overline{\nu}_{\mu}$

Background estimated from time scrambled data

Galactic Center/Milky Way:

- PLB 769 (2017) 249
- JCAP 10 (2015) 068

Sun:

- Phys. Lett. B 759 (2016) 69
- JCAP 05 (2016) 016

Earth:

• Phys. Dark Univ. 16 (2017) 41

Dark Matter annihilation as a source of neutrinos

ANTAR CO

ν_{μ} tracks only

- Data: 2007 2012 (1321 livedays)
- Competitive limits for SD WIMP-nucleus
 spin-dependent cross-sections

SUN Spin dependent cross section

\mathbf{v}_{μ} tracks only

- Data: 2007 2015 (2102 livedays)
- Galactic Center: Good visibility by ANTARES
- (~66%) m $\chi \in$ [50 GeV 100 TeV]

Galactic Center

Phys. Lett. B 759 (2016) 69

Phys. Lett. B 769 (2017) 249

Search for neutrinos from TXS 0506+056

Science:

arXiv: 1807.04309

AN TARES

- IceCube event IC170922A (GCN circular IC #21916)
 - $T_0 = 17/09/22, 20:54:30 \text{ UT}$
 - Extremely HE track: $E_{\nu} \approx 0.3 \text{ PeV}$
 - $(\alpha, \delta) = [77.43^{\circ}, 5.72^{\circ}]$
- Connected with observations in γ-rays (100 GeV, MAGIC) -15° and other wavelengths of the e.m. spectrum (Fermi-LAT) -3 from Blazar TXS 0506+056

ANTARES searches

(see D. Dornic talk)

- **1st "ONLINE DATA STREAM" SEARCH: fast reconstruction**
 - 0 upgoing track muon v candidate events
- 3rd **"2015 BURSTING PERIOD" SEARCH: time-dependent**
- <u>0 events</u> in flaring periods

- 2007 2017 data (3136 livetime days): 107 sources
- Likelihood: μ_{sig}=1.03 evts. Post-trial *p-value* = 87%
- 13 tracks + 1 shower ($\Delta \Psi = 5^{\circ}$), 17±4 atm. v expected
- $\Phi^{90\%}_{100 \text{ TeV}} = 1.6 \times 10^{-18} \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} (\Gamma=2) [2\text{TeV} 4\text{PeV}]$

ANTARES Visibility map at IC170922A

21

ANTARES

- ✓ 10 years of good data taking experience.
- Tracks & Showers reconstructed with excellent angular resolution
- Diffuse flux: small excess at high energy compatible with cosmic signal
- Point sources: best limits for Southern Sky Galactic Sources
 (E,<100 TeV)
- A lively and vibrant multi-messenger program search

KM3NET

- 2 ARCA + 1 ORCA strings in water
- ✓ ARCA : high-resolution follow up of Ice Cube flux
- ORCA : Measure neutrino mass hierarchy
- ✓ ESFRI Roadmap 2016, APPEC European Strategy 2017

