SEARCHING TRANSIENT NEUTRINO SOURCES WITH ICECUBE: STATUS AND RESULTS

THOMAS KINTSCHER (DESY) FOR THE ICECUBE COLLABORATION

VERY HIGH ENERGY PHENOMENA IN THE UNIVERSE QUY NHON, VIETNAM 2018/08/16

Photo Credit: John Kelley

NEUTRINO SIGNATURES IN ICECUBE

"Showers" / "Cascades"

- Neutral-current $v_e/v_\mu/v_\tau$, charged-current v_e
- ▹ Good energy resolution: ~10%
- Angular resolution: O(10 deg)

"Tracks"

- Muons from charged-current v_{μ}
- Energy resolution: 0.5 · log₁₀ E
- Good angular resolution: < 1 deg

NEUTRINO SIGNATURES IN ICECUBE

"Showers" / "Cascades"

- Neutral-current $v_e/v_{\mu}/v_{\tau}$, charged-current v_e
- Good energy resolution: ~10%
- Angular resolution: O(10 deg)

This talk!

NEUTRINO ORIGINS

- Different backgrounds in different hemispheres
- Northern sky ("up-going"):
 - Cosmic ray-induced air showers
 - Muons absorbed, muon neutrinos reach IceCube
- Southern sky ("down-going"):
 - Both muons and muon-neutrinos reach lceCube
 - Enormous background of atmospheric muons/bundles

Astrophysical sources

At analysis level: 100000 / year (bkg) 100 / year (signal)

At analysis level: 50000 / year (bkg) 10 / year (signal)

Astrophysical sources

T. Kintscher

SEARCHING FOR POINT SOURCES

- Using 8 (7.5) years of IceCube data
- Time-independent clustering analyses (<u>ApJ 835(2017)2</u>)
 - Searching the origin of diffuse flux in the northern sky:
 p_{local} = 10^{-5.97} (pre-trial) = 29.9% (post-trial)
 - And for starting events (Neutrino'18):
 p = 81% (post-trial)
 - Also no correlation with 74 tested sources
- Adding generic time-dependence: (<u>TeVPA 2016</u>)
 - Hottest spots

North: $p_{local} = 10^{-6.00}$ (pre) = 12.6% (post) South: $p_{local} = 10^{-5.85}$ (pre) = 22.4% (post)

TESTING THE MULTI-MESSENGER CONNECTION

Tested v-y correlation with variable
 Fermi-LAT Monitored Sources (<u>TeVPA 2016</u>):

North: PKS 0507+17, p = 30% South: PKS 2136-642, p = 70%

• Tested v-GW correlation, e.g. with GW170817:

NEUTRINOS AND GAMMA-RAYS

- IES 1959+650: HBL at δ=65 deg, z=0.048
 - 2002: Orphan flare (3 v in AMANDA)
 - 2016: Strong flare in VHE γ-rays
 - No excess in neutrinos; no correlation with gamma-rays (p = 50%)

- 3C 279: FSRQ at δ=-5.8 deg, z=0.536
 - June 2015: Fermi-LAT flux exceeds 40x steady flux
 - No excess in neutrinos; no correlation with gamma-rays (p = 19%)

3C 279

PRACTICAL EXAMPLE: THE ALERT IC170922A

ICECUBE-170922A: ALERT

- Sept. 22nd, 2017: EHE alert (Extreme High-Energy)
- Automated GCN Notice: RA 77.29 deg / Dec. 5.75 deg
- After the event:
 - $\checkmark\,$ Visual inspection of the event
 - ✓ Detector stability checks
 - ✓ Refined angular reconstruction
- 4h later: GCN circular
 - RA 77.43 deg / Dec. 5.72 deg
 - ▶ 90% PSF containment: 0.9 deg

 $\phi \phi \phi$ -44

ţ 4 ÷ 4 ¢ 6 . ó

٠. ŧĮ

•

11

÷ ÷

+4

14 1 .

÷ . ÷

۴

ł

٠

¢

÷ ÷

6-

-

Ţ

÷

٠

4

٠

÷

÷ ÷ ļ

I CONTRACTORY Ì 0 5 ÷. ٠

÷

٠

٠

٠

† † †

ļļ 1

A ΗŤ. ţ 1 ę, ٠ Ļ ٠ ٠ ٠ ٠

٠

0 0

والمردوس والمراجع والمردوق ÷ ÷ b ÷ ٠ ٠ ٠

ł ÷ ÷ ţ ÷ ÷ ¢ (

÷ ļ 6 ٠ ٠ ٠ . ÷ ÷

÷ ė ÷ è ÷

٠ ٠

٠

۰

Event 130033/50579430-6916977 Time 2017-09-22 20:54:30 UTC Duration 22467.6 ns

Searching Transient Neutrino Sources with IceCube

ICECUBE-170922A: SIGNAL PROBABILITY

- Energy estimate:
 - ▶ 5785 PE deposited (22 TeV)
 - 170 TeV muon energy at the detector
 - Most probable v energy: 290 TeV

- $E^{-2.00}$ (90% lower limit: 200 TeV, peak: 311 TeV) $E^{-2.13}$ (90% lower limit: 183 TeV, peak: 290 TeV) (TeV) $E^{-2.50}$ (90% lower limit: 152 TeV, peak: 259 TeV) 1.5 10^{6} Probability Density Muon Energy Proxy \hat{E}_{μ} \hat{E}_{μ} 1.0 10^{4} 10^{-1} 0.510 - 30.0 10^{2} 10^{4} 10^{0} 10^{6} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} Neutrino Energy E_{ν} (TeV) Neutrino Energy (TeV)
- Estimating "signalness", given declination (5.7 deg) and energy
 - Signalness = S / (S+B)
 - Signal assumption: diffuse astrophysical flux (E^{-2.13})
 - Dominant background: atmospheric neutrinos
- Probability for event to be of astrophysical origin: 56%

ICECUBE-170922A: ORIGIN?

- 3FHL source in the error circle: the blazar TXS 0506+056
- Fermi-LAT report of gamma-ray flare → plenty of follow-up observations
- MAGIC: VHE gamma-ray detection at 6.2σ (80 GeV 400 GeV)
- Chance coincidence? Disfavored at 3σ, in each scenario where...
 - ... v flux correlated to high energy γ -ray flux
 - ... v flux correlated to high energy γ -ray flux variations
 - \blacktriangleright ... v flux correlated to VHE $\gamma\text{-ray}$ flux
 - Note: a-posteriori significance
 - Details on the calculation in M. Hayashida's talk

ARCHIVAL SEARCH: MORE NEUTRINO EMISSION FROM TXS 0506+056?

POINT SOURCE SEARCH

- Location of TXS 0506+056: sweet spot of point source sensitivity
 - Low earth absorption for high-energy neutrinos
 - Low atmospheric muon background
- 9.5 years of archival data available:
 - From April 2008 (IC40)
 - Until Oct. 31st 2017
- Motivated by the alert and follow-up revelations:

Has TXS 0506+056 been a source of neutrinos in the past? (independent of the IC-170922 event)

Searching Transient Neutrino Sources with IceCube

TIME-DEPENDENT POINT SOURCE SEARCH

X

Unbinned maximum-likelihood method:

Spatial PDF

- Test compatibility with source location
- Use per-event angular uncertainty

$$\mathcal{L} = \prod_{i}^{\text{events}} \left[\frac{n}{N} S_i + \left(1 - \frac{n}{N} \right) B_i \right] \qquad \text{TS} = -2 \log \left(\frac{\mathcal{L}(\hat{n}, \hat{\gamma})}{\mathcal{L}(n = 0)} \right)$$

X

PDE

- Exploit different spectra of signal and background
- Use per-event energy estimate

Time PDF

 Clustering of signal over flat background

Time

 Generic: Box or Gaussian

• Fit parameters: number of events and spectral index

Science 361 (2018)

ICECUBE-170922A: ARCHIVAL ANALYSIS

- Search for neutrino emission prior to the alert using 9.5 years of archival data
- Compatible fit results between box-shaped and Gaussian time PDF
- Post-trial significance: 3.50

IC40

2009

5

4

2

0

log₁₀ p

ICECUBE-170922A: ARCHIVAL ANALYSIS

- Comparing with time-*in*dependent analysis of 9.5 years:
 - $\gamma = 2.1$, p = 0.9% (2.3 σ) excl. the trigger
- The hottest spot in this region, clearly separated from PKS 0502+049 (2 deg away)
- Compatible with previous result: (<u>ApJ 835(1), 2017</u>)
 Fermi-2LAC blazar contribution to astrophys. v flux < 27%

6.0

A NEUTRINO SOURCE?

- Excess due to number of events and energies
- Event energies comprising the flare:
 ~10 TeV muon energy
 → ~50 TeV neutrino energy
- Isotropic v luminosity > isotropic γ luminosity (1.2 × 10⁴⁷ erg s⁻¹) (0.3 × 10⁴⁷ erg s⁻¹) (32 TeV - 3.6 PeV) (100 MeV - 100 GeV)
- Bright object in gamma-rays
 - 3rd Fermi AGN catalog: among 50 brightest objects
 - ▶ Previously unknown redshift → now: order of magnitude more luminous than e.g. 1ES 1959+650!
- Located at favorable declination for IceCube
- Average time-integrated neutrino flux \approx 1 high-energy alert in same time frame

ICECUBE-170922A: NEUTRINOS AND PHOTONS

ICECUBE-170922A: NEUTRINOS AND PHOTONS

OUTLOOK

- Upcoming improvements to IceCube's alert system:
 - One high-energy alert stream
 - Combining starting and through-going tracks with 50% signal-ness
 - Improved event selections: doubling the rate of through-going tracks (~8/year) at same signalness
 - Searching for neutrino clusters in real-time (same as for TXS!):
 - Monitoring known, variable FERMI sources (3FGL/3FHL) for excess in neutrinos
 - Alerting IACTs: MAGIC, VERITAS, H.E.S.S.
 - Unbiased all-sky monitoring in preparation (→ public alerts)

NOTICE_DATE: NOTICE_TYPE: RUN_NUM: EVENT_NUM: SRC_RA:	GCN/AMON NOTICE Mon 23 Apr 18 02:29:12 UT AMON ICECUBE 130949 71165249 294.8820d {+19h 39m 32s} (J2000), 294.8324d {+19h 39m 20s} (current),
SRC_DEC:	295.0135d {+19h 40m 03s} (1950) +71.9530d {+71d 57' 11"} (J2000), +71.9958d {+71d 59' 45"} (current)
SRC_ERROR: SRC_ERROR50: DISCOVERY_DATE: DISCOVERY_TIME: REVISION:	+71.8356d {+71d 50' 08"} (1950) 534.00 [arcmin radius, stat+sys, 90 96.00 [arcmin radius, stat+sys, 509 18231 TJD; 113 DOY; 18/04/23 (2 8920 SOD {02:28:40.98} UT 0
REVISION: N_EVENTS:	0 1 [number of neutrinos]

SUMMARY

- Astrophysical neutrinos \rightarrow ongoing hunt for sources!
- IceCube's real-time capabilities:
 - Trigger follow-up observations and collect contemporaneous multi-messenger data
 - Search strategies:
 - Single, most-energetic neutrino events
 - Clustering of neutrinos in space and time
 - Monitor known source candidates
 - Chase unknown ones

- Evidence for TXS 0506+056 as a neutrino source: this may be just the beginning!
 - Afternoon talks: multi-wavelength campaign (Masaaki Hayashida) and interpretation (Shan Gao)