Short review and prospects of radio detection of high-energy cosmic rays

To understand the sources of cosmic rays ...

- we need to know their
 - arrival direction
 - energy
 - and mass
- we need
 large
 statistics
 - large effective areas and high duty cycles

adapted from R. Engel

Measurements of Air Showers

Frank Schröder; Prog. Part. Nucl. Phys. 93 (2017) 1-68 arXiv: 1607.08781

Radio from Air Showers

Detection principle:

-Geomagnetic deflection of electrons and positrons -Time-variation of number of charged particles -Time-variation of charge excess radiation -and possibly more (refraction index)

 → lead to coherent emission in atmospheric air showers (initiated by UHECR)
 - MHz (GHz) frequency range !

- µV/m-range amplitude
- few ns duration

December 2006

→ Development of a new detection technique!

5

P

ROM COSMIC

AIR SHOWERS

April 2003

February 2005

LOPES: Proof of principle

2. Radio data analysis

1000 H 14

1. KASCADE measurement

3. Skymapping

4. Many events

LOPES collaboration, Nature 425 (2005) 313

Radio from Air Showers

Thousands of cosmic-ray events unambiguously detected by

LOPES CODALEMA Radio Prototypes@Auger LOFAR AERA TREND ANITA ANITA Tunka-Rex

→Now: do we fully understand the signals?

Comparison of experiments to scale

Location of selected experiments and geomagnetic field

Prog. Part. Nucl. Phys. 93 (2017) 1-68 arXiv: 1607.08781

9

SKIT

Different Antenna Types

- Many working solutions at different experiments
 - LOPES, CODALEMA, Yakutsk, LOFAR, AERA, Tunka-Rex, ...
- Typical band today: 30-80 MHz (other bands under investigation)

Connection particle array – radio array:

Radio detection technique is presently in the step from developing phase to maturation!

Calibration (understanding) radio emission

Dependencies of radio signal Validity of simulation codes Understanding emission mechanism(s)

Capability of the radio detection technique?

Sensitivity and resolution to primary energy? arrival direction? composition ?

EAS radio detection for CR (and neutrino) measurements: stand alone or hybrid technique?

Hybrid with particle arrays, not fluorescence technique (duty cycle).

Complexity of radio footprint

vertical iron shower at LOPES frequencies simulated with CoREAS

T.Huege et al., ARENA2012

Testing simulations of radio emission

- Perfect agreement within experimental uncertainties of absolute scale (15-20%)
- Differences between various simulations codes < 10%
 → still difficult to test

LOFAR confirms slightly elliptical polarization

Precise LOFAR measurements reveal different emission regions for both processes.

Expected energy sensitivity of radio detection

linear scaling & characteristic distance for best energy estimate

Tunka-Rex energy reconstruction

- very good energy reconstruction
 - accuracy: absolute scale fits nicely with CoREAS simulations
 - precision: 20%
 combined resolution
 of radio and optical
 Cherenkov detectors
 (~15% alone)
- see also comparable results from LOPES

Tunka-Rex Coll., JCAP (2016) arXiv:1509.05652.

AERA energy reconstruction – radiation energy

- at each antenna calculate energy fluence from timeintegration of Poynting flux
- then

 integrate
 energy
 fluence
 over area
 using 2D
 signal
 distribution
 model

"Radiation energy" as energy estimator

Piere Auger Coll., Phys Rev. Lett. (2016), arXiv:1605.02564.

Absolute energy scale 18

Lateral distribution as probe for composition

 forward beaming of emission: geometrical distance from source (X_{max}) to observer influences emission pattern

vertical proton shower at LOPES frequencies simulated with CoREAS vertical iron shower at LOPES frequencies simulated with CoREAS

T. Huege

Experimental Xmax validation by Tunka-Rex

- slope of radio-LDF as Xmax estimator
- Xmax from optical Cherenkov detectors and radio antennas agrees very well
- combined Xmax resolution ~50 g/cm², Tunka alone ~28 g/cm²

Tunka-Rex Coll., JCAP (2016), arXiv:1509.05652.

Global fit of particle and radio LDF with LOFAR

global fit to CoREAS simulations gives Xmax to ~17 g/cm²

S. Buitink et al., Phys. Rev. D 90 (2014) 082003, S. Buitink et al. Nature 435 (2016) 70

Xmax / Composition by Radio

A lot of (promising) progress in Xmax determination by radio Experiments

- published already by
 LOPES

 PhysRevD 90(2014)062001

 Tunka-Rex

 PRD 97, 122004 (2018)

 LOFAR

 Nature 531(2016)70
 - Auger/AERA promising
 - Higher energy
 - More accurate EAS
 - Calibration
 - Various methods

→ Interpretation debatable: "Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10^{17.5} eV, our measurements indicate the existence of an additional galactic component to account for the light composition we measured....." (LOFAR@Nature)

Strengths and limitations of radio detection

- radio signal can be predicted from first principles
- measures pure electromagnetic shower component
- no absorption in the atmosphere, calorimetric energy measurement
- near 100% duty cycle
- high angular resolution
- particle mass sensitivity
- simple (cheap) detectors
- required detector spacing
- direction-dependent threshold
- radio-backgrounds

emission well-understood, can be used to set energy scale

direct comparison to FD, little influence of hadronic interactions

 $\sigma_{\rm F}$ < 15%, possibly below 10%, cross-calibration between detectors >95% σ < 0.5° σ_{Xmax} < 20 g/cm² dense (< 40 sparse) \$1000/detector (+infrastructure) $<300 \text{ m} (\theta < 60^{\circ}) >1 \text{ km} (\theta > 65^{\circ})$ cut heavily or rely on simulations $E > 10^{17} eV$, exploit external triggers

Slide by Tim Huege

Prospects for future radio experiments

- Future radio arrays for air-showers (plans and ideas)
 - Auger Radio Upgrade
 - GRAND
 - SKA
 - Radio array at the South Pole

Huge footprint for inclined showers

- air showers up to 83° zenith angle measured
- footprints with radii up to 2 km in shower plane
- detection with 1.5 km antenna grid would be sufficient

Enables sparse antenna arrays for highest energies at reasonable costs

O. Kambeitz for the Pierre Auger Collaboration, ARENA2016 conference, arXiv:1609.05456

Radio upgrade of the Pierre Auger Observatory

Add one antenna to each upgraded surface detector

- Enhanced mass-sensitivity for inclined showers
- Mass-sensitive anisotropy studies with increased sky coverage
- Search for neutrinos + photons

Auger Coll.

Giant Radio Array for Neutrino Detection (GRAND)

Huge array in China for cosmic rays and neutrinos above 10¹⁷ eV

The Square Kilometer Array: ultra high precision

- Air-showers detection in parallel to astronomy (50-350 MHz)
- X_{max} resolution of < 10 g/cm²
- Might enable detailed shower physics with radio

- to be built in western Australia with first science 2020, planned completion 2023
- >60,000 dual-polarized antennas within 750 m diameter; bandwidth 50-350 MHz
- can be used for air shower detection with minor additions
- precision measurements in energy range of ~10^{16.5} to 10^{18.5}

antenna stations

60,000 antennas on 1/2 km²

Simulation study on proposed radio array at South Pole

1 km² with 125 m spacing between antennas

100-190 MHz; Possible with SKA antenna

Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole A. Balagopal V., A. Haungs, T. Huege, F.G. Schröder, European Physics Journal C 78 (2018) 111

New Idea: Array with PeV threshold at South Pole

Radio array will make IceTop the most accurate PeV-EeV air-shower detector PeV photon search from Galactic Center EPJ C 78 (2018) 111

F.Schröder, ARENA2018

Summary and conclusions

- radio detection of CRs has boomed and matured in the last decade
- we have clearly established
 - detailed understanding of complex radio emission physics
 - event detection (externally and self-triggered)
 - determination of arrival direction (<0.5°)
 - determination of air shower energy (<~20%, maybe 10%?)</p>
 - radio signal sensitivity to particle mass (via Xmax, <20 g/cm²)
- potential for application
 - high-duty-cycle energy & mass reconstruction in hybrid arrays
 - cross-calibration of the energy scale of cosmic-ray detectors
 - independent calibration of energy scale from first principle calculations
 - Air-shower physics via measurement of electromagnetic cascade
 - UHE CR & Neutrino measurements
 - (Not discussed) in-ice radio EHE Neutrino detection

Thanks to Frank Schröder (Prog.Part.Nucl.Phys.93-2017-1) and Tim Huege (Phys.Rept.620-2016-1)

