Long-term study of NGC 1275

Bindu Rani NPP Fellow NASA GSFC, USA

on behalf of the Fermi-LAT collaboration

Scientific contributors: J. A. Hodgson, J. C. Algaba, T. P. Krichbaum, A. P. Marscher, S. J. Jorstad, F. Mertens, Junghwan Oh

Very High Energy Phenomena in the Universe, Vietnam

Gamma-ray sky seen by the Fermi Large Area Telescope

Gamma-ray sky seen by the Fermi Large Area Telescope

Key Questions

* How are jets made and confined?

How do relativistic outflows dissipate?

Blazars - jetted AGN pointing close to our line-of-sight

Credit: B. Rani

Radio galaxies - jetted AGN pointing at a larger angle to our line-of-sight

Credit: B. Rani

Why NGC 1275?

3C 84 - a long history

3C 84: compact radio counterpart of NGC 1275 - nearby (z=0.0176) giant elliptical galaxy

3C84

M_BH ~ 8x10^8 solar masses 1 mas ~ 0.036 pc ~ 500 Rg X-ray image of Perseus Cluster

credit: Chandra X-ray observatory

Credit: HST image archive

Why NGC 1275?

- A nearby radio galaxy
- GeV/TeV sub hour scale variations since end of 2016
- Active galaxy at the centre of X-ray cluster

- * Jet launching
- * High-energy
 - acceleration processes
- * AGN feedback?

Key Questions

How are jets made and confined?
How do relativistic outflows dissipate?

- Flux and spectral variability
- Correlation between different frequencies
- Comparing the physical parameters of the jet
- Jet kinematic
- Zooming into the jet launching region

Flux and Spectral variations

Radio observations

3C 84 - a long history

Known to be active since the 60s

Rapid flare superimposed on long-term rising trend

TeV variations seen by MAGIC

TeV variations seen by MAGIC

MAGIC collaboration et al. 2018, arXiv:1806.01559v1

TeV variations seen by MAGIC

MAGIC collaboration et al. 2018, arXiv:1806.01559v1

Cloud in jet

Multiband correlations

C1: faster variations C3 : long-term variations

C1: faster variations C3 : long-term variations

Multiple gamma-ray emitting sites

Comparing the emission region parameters

Comparing the emission region parameters

Jet kinematics

Jet kinematics

* Motion in both eastern and western lane

*No fast spine detected

Proposed models:

- Magnetospheric?
- * Spine sheath
- Cloud in jet

Jet kinematics- colliding shells

Moving components hit each other and the ambient medium

Hodgson et al. 2018

Jet kinematics- colliding shells

Hints of GRB-like emission in 3C 84: faster shells collide with slower ones to produce gamma-rays

Probing the jet launching region

Zooming into the jet launching region

credit: Giovannini et al. 2018

Zooming into the jet launching region

Jet base > 250 Rg

credit: Giovannini et al. 2018

Is it really the base of the jet?

Zooming into the jet launching region

Zooming into the jet launching region

Is it really the base of the jet?

Summary

* How are jets made and confined?

- both from the disk and from the black hole
- collimated most likely by the surroundings wind, ambient medium etc.

How do relativistic outflows dissipate? hints of colliding shells

thanks for your attention