VHE gamma-ray emission from binary systems observed with the MAGIC telescopes

Alicia López Oramas (IAC)

O. Blanch, E. de Oña Wilhelmi, A. Fernández-Barral, D. Hadasch, J. Herrera, E. Moretti, P. Munar-Adrover, J.M. Paredes, M. Ribó (the MAGIC collaboration), P. Bordas, F. Brun and R. Zanin

Transients with MAGIC

MAGIO

- A new gamma-ray binary:
- PSR J2032+4107
- Searching VHE emission from massive microquasars
 - SS 433
 - Cygnus X-1
 - Cygnus X-3
- Searching VHE emission from LMXBs
 - V404 Cygni

NASA/Goddard/Feimer

NASA/CXC/M.Weiss

The MAGIC telescopes

- Two telescopes, 17 m diameter
- Energy threshold (trigger) ~50 GeV
- Integral sensitivity E >290 GeV: (0.67 ± 0.04)% of Crab Nebula flux in 50 hours (Alekić et al. 2016)
- Energy resolution: 15-23 %
- Angular resolution: ~0.1°

Gamma-ray binaries: what are they?

- Definition:
 - **Bulk of the non-thermal** emission lies in the γ -ray domain (E>1MeV)
 - Only 7 (6+a new one!) display VHE emission
 - Massive star + compact object (2 pulsars, 5 unidentified)
- Recently some **microquasars** detected at **HE**

PSR J2032+4127/MT91 213 A NEW GAMMA-RAY BINARY

- TeV 2032+4130 : unidentified source discovered by HEGRA (HEGRA 2002, Aharonian et al. 2005) and confirmed by Whipple (Konopelko et al. 2008), MAGIC , (Albert et al. 2008)
- Pulsar PSR J2032+4127 discovered in blind search by *Fermi*-LAT (Abdo et al. 2009). Young, high spin-down power
- TeV 2032+4130 possibly a wind nebula driven by the pulsar PSR J2032+4127 (Bednarek 2003, Aliu et al. 2014)
- **Binary nature**: PSR 2032+4127 associated to Be star MT91 213 (Lyne et al. 2005)

DEC [deg]

42

41-

- Extremely eccentric binary:
 - Orbital period: ~50 years (Ho et al. 2017)
- Periastron: November 2017 (MJD 58070)
- Monitoring of the source:
 MAGIC +VERITAS joined campaign
 - 53.7 h (2016 May September)
 - 34.2 h (2017 June December)
- September 2017 (ATel #10810):
 - TeV gamma-ray flux increased a factor 2 wrt June-August 2017 average
- November 2017 (ATel #10971)
 Periastron passage (MJD 58069.8):
 - Flux increased almost a factor 10 wrt the average flux in June-August in only 1.9 h

X-rays Swift LC:

- Peaked about 30 days before periastron
- Gradually decreasing, minimum at periastron
- Recovery over the next 30 days (punctual flare 15 days after periastron)

VHE LC:

- Flux peaked at periastron
- 7 days after periastron: sharp decrease of the flux compatible with the baseline emission. Flux **recovered** to periastron level few days later
- Sharp dip after periastron likely caused by $\gamma\text{-}\gamma$ absorption

- 2016: only steady emission component was present (associated to TeV 2032+4130)
 2017: include contributions from both the steady and variable sources
- A joint fit was conducted to determine the spectral properties of the emission from the binary above the (baseline) background from the PWN (modeled as a PWL).

SS433, Cygnus X-1 & Cygnus X

SEARCHING FOR VHE EMISSION FROM MASSIVE MICROQUASARS

NASA/CXC/M.Weiss

SS433/W50 complex

- Only galactic super-critical accretor
- Persistent hadronic relativistic jets
- Porb ~13 days, Ppre ~162 days
- Embeded in W50 nebula
 - Interaction regions: X-ray & radio non-thermal emission
- Detected at HE (Bordas et al. 2015)
- Prediction of gamma-ray fluxes at E>800GeV due to pp interactions (Reynoso et al. 2008)
- Absorption of putative emission in ~80% of the orbit
 - Best opportunity for observations: Φpre=0.91-0.09

SS 433/W50 at VHE

- MAGIC + H.E.S.S. campaign
 - No significant excess detected
 - Upper limits (95% C.L.) compatible with predictions by Reynoso et al. 2008

Hadronic scenario

- Efficiency in transferring jet kinetic power to relativistic protons:
 - We can **constrain**: $q_p \le 2.5 \times 10^{-5}$

Leptonic scenario

- Interaction regions:
 - X-rays (synchrotron origin) -> presence of electrons up to ~50 TeV
 - Expected fluxes (Bordas et al. (2009): roughly at level of the reported ULs
- HE electrons may loose most of their E preventing an efficient production of gamma-rays
- ULs: constrains on the magnetic field: lower limit of 20-25µG

bremsstrahlung 09.7 lab star + BH

- Highly collimated **one-side jet** (Stirling et al. 2001)
- Surrounded by radio/optical nebula (Gallo et al. 2005, Russell et al. 2007)
- Three transient episodes with AGILE during HS and IS (Bulgarelli et al. 2008, Sabatini et al. 2010, 2013)
- Detected at HE during HS: 7.5yr Fermi-LAT data (Zanin et al. 2016)
- Hint of emission with MAGIC: 4σ in 80 min (Albert et al. 2006)
 - Simultaneously with hard X-ray flare
 - During HS and SUPC

collimated iet

synchrotro

lobe

Cygnus X-1: results

- 100 h (2007-2014) of MAGIC observations mainly at HS (83h)
- No significant excess at either Xray state for steady, orbital or daily basis emission
- No emission above 200 GeV due to interaction between jet and ISM
 - Jet-medium interaction discarded as possible region for VHE emission above MAGIC sensitivity level: not affected by γ-γ absorption
- **Transient emission** (Albert et al. 2007) **still possible** at binary scale

MAGIC coll., 2017, MNRAS, 472, 3474

 10^{-10}

s⁻¹]

Ъ

Galactic jets: Cygnus X-3

The system

- WR+compact object
- Short orbit: 4.8 h
- Major radio flares during soft state (Szostek et al. 2008)
- HE emission detected: AGILE (Tavani et al. 2009) and Fermi-LAT (Abdo et al. 2009)

Latest results

- August-September 2016 (radio) flare: 70 h observations during SS
- No steady/transient VHE emission (E>100 and E>300 GeV)
- Not orbital/daily modulation

Explanation

- Extremely **high absorption** due to the WR
- VHE gamma rays, if produced, are originated inside the binary scale and not at the radio-emitting regions of the jets far from the compact object

MAGIC coll, ICRC Proceedings 2017 (arxiv 1709.01725)

MAGIC, ICRC 2017

SEARCHING FOR VHE EMISSION FROM LMXBS

The LMXB V404 Cygni

The system

- ~1 M_{\odot} star + 9-15 M_{\odot} BH (Khargharia et al. 2010)
- Orbital period: 6.5 days (Casares et al. 1992)

What happened?

- Major outburst in June 2015 after 26 years in quiescent state
- MAGIC was triggered by INTEGRAL: ~11h between June 18 - 27
- Selection of the flaring times for MAGIC: Bayesian block analysis on the INTEGRAL LC

Latest results

- 7h distributed in different nights
- No signal detected (0.08σ), UL (E= 200-1250 GeV): 4.8x10⁻¹² ph cm⁻²s⁻¹

V404 Cygni: discussion

MAGIC Coll. 2017, MNRAS, 471, 1688.

- Evidences of jet emission in optical observations on 26th June:
 - + hint of detection (~4 σ) in Fermi-LAT data (Loh et al. 2016)
 - + giant radio flare
 - + increase of hardness ratio in X-ray band
 - + optical fast variability
 - Jet environment dramatically changed
 - No detection in MAGIC data (~1 hr taken simultaneously)
- Luminosity MAGIC upper limits ~2 × 10³³ erg s⁻¹ , in contrast with extreme luminosity emitted in X-ray band ~2×10³⁸ erg s⁻¹
- Estimated γ-ray opacity during flaring period & non-detection: inefficient γ-ray emission (0.003%) in V404 Cyg jets if VHE emitter is located r >1×10¹⁰ cm from the compact object.

Summary

- PSR J2032+4127: a new gamma-ray binary!
 - TeV emission of PSR J2032+4107 during periastron passage. Flux increased factor 10 wrt than baseline measured in June-August.
 - SED described by a EPWL in low state (before periastron) and PWL during high state (during periastron passage). Baseline emission as a PWL
- Search for VHE emission from **microquasars**:
 - No significant excess from SS433/W50 complex. Constrains on particle acceleration and magnetic field
 - No detection of Cygnus X-1 at TeV energies: ULs for steady, daily and separated X-ray states (including phase-folded analysis)
 - Cygnus X-3 shows extremely **high absorption** due to the WR. VHE emission possible **at binary scale**
 - ULs on the LMXB V404 Cygni during the June 2015 major outburst: inefficient γ-ray emission

Gamma-ray binaries: state-of-the-art

extra

	System	Star spectral type	Compact object	Porb [days]	HE emission	VHE emission
	PSR B1259-53	Ве	48ms pulsar	1236.72	yes	yes
	LS 5039	ο	-	3.91	yes	yes
	LS I +61 303	Be	-	26.49	yes	yes
	HESS J0632+057	Ве	-	315.50	yes	yes
	FGL J1018.6-5856	0	-	16.58	yes	yes
extragalactic	LMC P-3	ο	-	10.2	yes	yes
new binary	PSR J2032+4127	8e			yes	yes

HE emitters	Cygnus X-1	Ο	ВН	yes	no (4σ hint once)
	Cygnus X-3	WR	BHŞ	yes	no
	SS 433	А	ВН	yes	no

VHE gamma-ray emission from binary systems observed with the MAGIC telescopes

Alicia López Oramas (IAC)

O. Blanch, E. de Oña Wilhelmi, A. Fernández-Barral, D. Hadasch, J. Herrera, E. Moretti, P. Munar-Adrover, J.M. Paredes, M. Ribó (the MAGIC collaboration), P. Bordas, F. Brun and R. Zanin