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● What are Galactic winds?
● The role of CRs
● Hydrodynamics of galactic winds
● CR transport in a CR-driven wind
● Diffusive halo
● CR spectrum 
● Role of the Galactic environment

OVERVIEWOVERVIEW
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WHAT ARE GALACTIC WINDS?WHAT ARE GALACTIC WINDS?

● Outflows from Galaxies

● (non)-stationary

● Flow subsonic near the gal. Disk

● Flow accelerated to supersonic 
speed by thermal, radiation, CR 
pressure gradients...
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WINDS IN GALAXIESWINDS IN GALAXIES

● AGN, Starburst Galaxies, ...

● Mass loss 

● Flow speed  

● Driven by        ,        ,       , ...

Ṁ≃M S / yr

u≃100km / s

PTH PRAD PCR

● Galactic evolution

● Star formation rate

● Chemistry of ISM and IGM

● Missing barions



 5

WINDS IN THE MILKY WAYWINDS IN THE MILKY WAY

OBSERVED GALACTIC OBSERVED GALACTIC 

HALOHALO

EVIDENCE OF EVIDENCE OF 

WINDS?WINDS?

● X-ray em./abs.

● Oxygen lines

● Large (~ 100 kpc)

● Hot (~ millions K)

● Metallicity ~0.2-0.3 

● From the disk

(Miller and Bregman (2015))
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THE ROLE OF CRsTHE ROLE OF CRs

● Thermal and radiation pressure not enough in the Milky Way 
● Dynamical role of CRs
● CR push against the gravitational force

● CR diffusive and advective motion
● CR scattering and Effective coupling with ISM
● Role of self-generation of plasma waves and wave damping 
● Effective propagation region becomes energy dependent
● Prominent effects on the CR spectrum 

ECR≃ETH≃EMAG

(Ipavich (1975))
(Breitschwerdt et al. (1991))

(Recchia et al. (2016))
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WINDS HYDRODYNAMICSWINDS HYDRODYNAMICS

● One-dim modelOne-dim model: the flow and the 
CR transport occur along the 
magnetic field lines, 
perpendicular to the disk

● Stationary flow

● Flux-tube geometry is 
preassigned

● CRs treated as a fluidCRs treated as a fluid, pressure 
contribution

● PPCR CR  connected with the CR  connected with the CR 
spectrumspectrum  

● Damping of waves heats the gas

CR, THCR, TH

GRAVGRAV
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WINDS HYDRODYNAMICSWINDS HYDRODYNAMICS

MASS, MOMENTUM AND ENERGY CONSERVATION 
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GENERALIZED SOUND SPEED

EFFECTIVE CR ADIABATIC INDEX

CR DIFFUSIVITY

HEATING DUE TO WAVE DAMPING

z= distance from the galactic disk z= distance from the galactic disk 
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WIND HYDRODYNAMICSWIND HYDRODYNAMICS  
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WIND EQUATION:

CRITICAL POINTS OF 

THE WIND EQUATION:

NUM=0

DEN=0 

WIND BASE: n0e assigned.

Need to determine u0 that 

gives smooth transition to 

supersonic flow 

distance from the GDdistance from the GD

Flow speedFlow speed

SONIC POINTSONIC POINT
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THE WIND LAUNCHING DEPENDS ONTHE WIND LAUNCHING DEPENDS ON:
● input parameters at the wind base (n, T, B, Pc)

● flux-tube geometry

● Galactic gravitational potential (bulge, disk, Dark Matter halo)

RESULTS: HYDRODYNAMICSRESULTS: HYDRODYNAMICS  

CONSTRAINT FROM OBSERVATIONS, DEPENDENCE ON THE 

POSITION IN THE GALAXY

● Wind solution exists for closed intervals of n, T, Pc, g

● Small n and g, large T and Pc: non stationary outflows...

● Large n and g, small T and Pc: not enough energy for 
outflow...

● Stationary non transonic flows, non stationary flows...
(Everett et al. (2008)) (Recchia et al. (2016))
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HYDRODYNAMICSHYDRODYNAMICS : TYPICAL CASE : TYPICAL CASE
● PCR > PTH  @ ~10kpc

● CRs push all along the 
wind profile 

● Different adiabatic index

● Crucial for wind launching

SONIC POINTSONIC POINT

WAVE DAMPINGWAVE DAMPING
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HYDRODYNAMICS: DM HALOHYDRODYNAMICS: DM HALO  

DM important also far 

from the disk

models of DM halo:
● Navarro-Frenk-White (NFW)

● Burkert (BUR)

● Innanen(INN)

● Similar DM densities at the SUNSimilar DM densities at the SUN

both u
0
 and u

f
 change  

              



 13

CR TRANSPORT: SIMPLE MODELCR TRANSPORT: SIMPLE MODEL  

Q0( p)∼p
−γ

D (p)∼ pδ
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∂ f
∂ z ]+u ∂ f
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CR TRANSPORT EQUATION

DIFFUSION ADVECTIONADVECTION COMPRESSIONCOMPRESSION

INJECTIONINJECTION
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CR TRANSPORT: SIMPLE MODELCR TRANSPORT: SIMPLE MODEL  

f 0
adv

( p)=
Q0

2u
∼p−γ

ADVECTION DOMINATETED REGIME
● Low energies (below ~ 10 GeV)
● Spectral slope same as injection

DIFFUSION DOMINATETED REGIME
● High energies
●

●

●

●

●

●

● Spectral slope depends also on D(p)
 
● Dependence on the halo size?

f 0
diff

( p)=
Q0

2
H
D

∼p−γ−δ
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WHAT SCATTERS CRsWHAT SCATTERS CRs

● Plasma (Alfvén) waves? 

● Resonant scattering?

● Self-generation from CRs?

● Background turbulence?

● Damping mechanisms?

● Here we assume:

Self-generation by streaming instability

Damping by NLLD

Background Kolmogorov turbulence
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CR PROPAGATION : ISSUESCR PROPAGATION : ISSUES

CR DENSITY CR DENSITY 
GRADIENTGRADIENT

● Physical processes which determine D, u and H?Physical processes which determine D, u and H?

● CR gradient

● CR induced diffusion

● Advection with self-generated waves

● CR-driven large scale flows (WINDS)

● Free escape boundary? Size of the propagation region
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● u(z) grows with zu(z) grows with z

● At a given z*(p) advection overcome diffusionAt a given z*(p) advection overcome diffusion

● The size of the diffusive halo becomes energy 
dependent

● No need to impose H by hand output from the 
transport model

● Additional effects if z* is in the region of flux tube 
opening 

SIZE OF THE DIFFUSIVE HALOSIZE OF THE DIFFUSIVE HALO

H 2
( p)
D

=
H (p)
u

→H ( p)∼√D

(Ptuskin et al. (1997)) (Recchia et al. (2016))

u∼u0 z
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CR TRANSPORT IN A CR-DRIVEN WINDCR TRANSPORT IN A CR-DRIVEN WIND  

WIND HYDRODYNAMICS: determine the wind velocity, the 

gas density and pressure, the CR pressure and the magnetic field  

CR TRANSPORT:  determine the CR distribution function and 

the CR-induced diffusion coefficient  

PROBLEM BADLY NON LINEAR 

CR DISTRIBUTION 

FUNCTION

DIFFUSION COEFFICIENT

WIND VELOCITY
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CR SPECTRUM AT EARTHCR SPECTRUM AT EARTH  

● Wind lanched near the disk 
at Sun position

● launching param. within 
observations

● advection vadvection vAA(z)+u(z)(z)+u(z)
● Hard spectrum at low 

energies

U
0
 = 93 km/s

U
0
  → HARD

(Recchia et al. (2016))

f 0
adv

( p)=
Q0

2u
∼p−γ
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CR SPECTRUM AT EARTHCR SPECTRUM AT EARTH  

U
0
 = 30 km/s

● wind launched at z0 = 100 
pc

● launching param. within 
observations

● UU00 = 30km/s   VS      93km/s = 30km/s   VS      93km/s

● smaller advection, better smaller advection, better 
agreement at low energyagreement at low energy 
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CR SPECTRUM AT EARTHCR SPECTRUM AT EARTH  

● steep diffusion coefficient (self generation)
● wind expansion, H(p) in the expansion region
● very steep spectrum at high energyvery steep spectrum at high energy
● Need additional source of turbulence  

D ~ pD(p) → STEEP



 22

CR SPECTRUM AT EARTHCR SPECTRUM AT EARTH  

● Role of pre-existing Role of pre-existing 
turbulenceturbulence

● Spectral hardening at Spectral hardening at 
high energieshigh energies 

HARDENING

TRANSITION FROM 

SELF-GEN. D TO 

KOLMOGOROV 

(D(p) ~ p1/3) 

(Aloisio et al. (2015))



 23

● Winds ubiquitous and important for galaxies
● Winds maybe also in the Milky Way 

(observation of the halo)
● CRs are likely to drive winds in the MW  
● Strong dependence on the Galactic 

environment
● CR transport in CR driven winds 
● Self-generation, advection, halo size
● Important implication for the CR spectrum 

SUMMARYSUMMARY
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● Non stationary flows (fountains, winds, …)

● Other stationary flows (Breezes)

● CR distribution in the Galaxy

● Transport of metals etc with the wind

● Implications on the CR grammage 

● Reacceleration of CRs at the wind termination shock

● Self consistent determination of the flux tube geometry 

● Application to other galaxies

INTERESTING DEVELOPMENTSINTERESTING DEVELOPMENTS

(Dorfi et al. (2013))

(Taylor et al. (2017))

(Ruszkowski et al.(2016))

(Zirakashvili et al. (2006))

(Recchia et al. (2016))

(Zirakashvili et al. (1996))
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R < 10 kpcR < 10 kpc

n
CR 

>  than at R> 10 kpc

n
CR   

peak at 2-5 kpc

CR slope 2.5-2.6 at 3 kpc 

CR  DISTRIBUTION: GAMMA-RAY DATACR  DISTRIBUTION: GAMMA-RAY DATA

● FermiLAT data 

● Gamma-Rays → nCR (R)

● Catalogs → CR Sources(R)  

R > 10 kpcR > 10 kpc

n
CR 

flatter than SN(R)

“radial gradient problem”

CR slope 2.8-2.9
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A DIFFICULT INTERPRETATIONA DIFFICULT INTERPRETATION  
[Acero et al. ArXiv:1602.07246]

[ Yang, Aharonian & Evoli, 2016]

● difficult to explain in a 
standard leaky-box model

● D constant in the Galaxy. 
Cannot explain nCR(R) and 
slope(R)

● Several extension of the 
leaky box have been 
proposed
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PROPOSED SOLUTIONSPROPOSED SOLUTIONS  
● Extended halo, H > 4 (Dogiel, Uryson, 1988; Strong et al.,1988; Bloemen, 

1993, Ackerman et al., 2011)

● Flatter distribution of SNR in the outer Galaxy (Ackerman et 
al., 2011)

● Enhancement of CO/H2 density ratio (X ) in the outer

Galaxy (Strong et al., 2004)

● Injection dependence on the ISM temperature (Erlykin et 
al., 2015)

● Advection effects due to the Galactic wind (Bloemen, 1993; 
Breitschwerdt, Dogiel, Voelk, 2002)

None of these ideas can simultaneously account

for the both the CR density and spectral slope
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● Natural radial dependence in non-linear CR propagation, in 
particular with winds

● Standard CR prop. Models → D constant in the Galaxy. Cannot 
explain nCR(R) and slope(R) Evoli et al. (2012), Gaggero et al. (2015a,b) 

● Galactic magnetic field and ISM density

● Injection of CRs, Galactic distribution of sources  

RADIAL DEPENDENCE RADIAL DEPENDENCE 

v A(R)=
B (R)

4 πρ(R)
D self−gen(v A ,B , nCR )

Q0( p , R)

uwind
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ASSUMPTIONSASSUMPTIONS  

● D is self generated 
● VA constant along z (perp. to 

the disk)

● Free escape boundary at 
z=H

● n(R)=const
● B(R) varies     

f SNR∝( RRS
)
α

e
−β

R−R s

Rs

BB00(R)(R) : const    R<5 kpc

            1/R       R>5 kpc

[exp. cut-off    R> 10 kpc]

SOURCE DISTRIBUTION

         (GREEN 2015)
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TRANSPORT  EQUATION: SOLUTION TRANSPORT  EQUATION: SOLUTION 
WITHOUT WINDSWITHOUT WINDS

f 0
diff

(R)∼(Q0(R)

B0 (R) )
3

f 0
adv(R)∼(Q0(R)

B0(R ))

● Injection Spectrum 

● Diffusive regime

● Advective regime

f 0
diff

(p)∼p7−3γ

f 0
adv

( p)∼p−γ

Q0
adv

( p)∼p−γ
γ≈4.3
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CR RADIAL GRADIENT(NO WINDS)CR RADIAL GRADIENT(NO WINDS)  
CR density at 20 GeVCR density at 20 GeV spectral slope at 20 GeVspectral slope at 20 GeV

f 0
adv

∼(Q0

B0
)

● B~const

● peak Q0 ====>  many waves =====> CRs well confined 

● peak CR density 

● advective regime =====> hard spectrum

ADVECTION

ADVECTION

f 0
adv

( p)∼p−γ
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CR RADIAL GRADIENT(NO WINDS)CR RADIAL GRADIENT(NO WINDS)  
CR density at 20 GeVCR density at 20 GeV spectral slope at 20 GeVspectral slope at 20 GeV

DIFFUSION

DIFFUSION

f 0
diff

∼(Q 0

B0
)

3

f 0
diff

(p)∼p7−3γ

● B~1/R

● small Q0 ====>  few waves =====> CRs poorly confined 

● low CR density 

● diffusive regime =====> steep spectrum
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CR RADIAL GRADIENT(NO WINDS)CR RADIAL GRADIENT(NO WINDS)  
CR density at 20 GeVCR density at 20 GeV spectral slope at 20 GeVspectral slope at 20 GeV

DIFF. + B cut-off

DIFF. + B cut-off

● B~1/R with exponential cut-off above R=10kpc

● small Q0  + small B ====> D smaller despite few sources  

● better confinement of CRs,  higher CR density 

● B and Q0 same R dependence ====> flatter CR density

Mixed diffusion/advection regime ====> harder CR spectrum

Cut-off scale ~ 3kpc
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● At the source peak: larger advection with wind → smaller CR density

● At the source peak: larger advection with wind VS larger D(less waves) 

● At R > 10 kpc wind not launched (for the chosen input parameters)

● Results at R< 10 kpc depend on the Dark Matter halo potential

CR RADIAL GRADIENT(WINDS)CR RADIAL GRADIENT(WINDS)  

ADVECTION
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WIND HYDRODYNAMICSWIND HYDRODYNAMICS  
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