

Fermi-LAT observations of Supernova Remnants

F. de Palma

(INFN Torino) on behalf of the Fermi-LAT Collaboration

Very High Energy Phenomena in the Universe 14th Rencontres du Vietnam

- Single source analysis:
 - Morphologies
 - Spectra
- Catalog studies
- Future experiments: CTA

MORPHOLOGIES

RCW 86 Morphology & Spectrum

with

the

- Pure power-law function
- The broadband emission from radio • to TeV cannot be described by a pure hadronic scenario

Energy (GeV)

10

104

10

10

RX J1713 morphological analysis

- *Fermi*-LAT analysis with 7.5 years of Pass 8 data
- A nice shell matching the TeV morphology
- Break in the spectrum of the whole remnant at 17 GeV
- Difference between low energy index in the two regions at 3.5 σ

Condon B.+ @ Gamma 2016

Energy (GeV)

Gamma-ray Space Telescope

F. de Palma @ VHE

- Composite SNR + PWN region
- Disentangled with a subselection of new Pass8 data
- MW modelling in the hadronic scenario

Devin, J. + arXiv:1805.11168

SPECTRA

15/09/18 T. Jogler and S. Funk, ApJ 2016

Dermi

F. de Palma @ VHEPU 2018 HESS + Fermi-LAT Abdalla+ 2018, A&A

γ-ray emission dominated by Inverse Compton

F. de Palma @ VHEPU 2018

Young SNRs

Hadronic scenario

γ-ray emission dominated by pion decay Presence of accelerated protons

An SNR in another galaxy: N132D in the LMC

preliminary – count map

Gamma-ray

- Brightest x-ray SNR in the LMC
- High energy reacceleration?
- Both leptonic and hadronic models require E_{cr} > 10⁵¹ erg

Castro, D.+ @Fermi Symposium 2017

	preliminary				
]	luminosities (erg/s)				
	radio 1 GHz	x-ray 0.1-10 keV	γ-ray 0.1-100 GeV		
n132d	$1.3 \ge 10^{33}$	9.9 x 10 ³⁷	(1 x 10 ³⁶		
w49b	$4.4 \ge 10^{32}$	$4.5 \ge 10^{37}$	2 x 10 ³⁶		
w51c	$5.5 \ge 10^{32}$	$\sim 9 \ge 10^{36}$	$8 \ge 10^{35}$		
w44	$1.9 \ge 10^{32}$	$\sim 2 \ge 10^{36}$	$5 \ge 10^{35}$		
ic443	6.1 x 10 ³¹	$\sim 1 \ge 10^{36}$	1 x 10 ³⁵		
cas a	$3.6 \ge 10^{33}$	$2.6 \ge 10^{37}$	$8 \ge 10^{34}$		
tycho	$1.3 \ge 10^{32}$	1.2 x 10 ³⁶	$4 \ge 10^{33}$		

CATALOGS

ermi Fermi Galactic Extended Source (FGES) Catalog

- Study of extended sources in the Galactic plane
- Detected 46 extended sources:
 - 16 are new

Gamma-ray Space Telescope

- 13 agree with previous publications
- 17 have a different morphology.
- Only 4 known LAT extended
 sources were not detected
 since they don't have
 emission above 10 GeV

- Pass 8,
- 6 Years,
- 10 GeV 2 TeV

Sources modeled as flat disk

Ackermann, M. + 2017, ApJ, 843, 139

- First detection of gamma-ray extension (point source in Castro+ 2012)
- Good agreement with x-ray/radio size
- Rules out giant molecular cloud west of remnant
- Good candidate for TeV observation

Characterized 279 regions containing known radio SNRs:

- 102 candidates have significant GeV emission:
 - 36 candidates classified through spatial association with radio data:
 - 17 extended: <u>4 new</u>!
 - 2 show spectral curvature
 - 13 point-like hypothesis preferred: <u>10 new</u>!
 - 2 are flagged for IEMs systematics
 - 4 identified as other sources (Crab, binary, and PWN/PSR)
 - 14 marginally classified candidates
- For the 245 candidates that don't have a significant GeV emission or that fail classification, we report their ULs.
- <u>All the detected sources were tested for effects related to the choice of IEMs.</u> Acero+ 2016 APJS

16

Multiple emission zones?

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

Gamma-ray Space Telescope

F. de Palma @ VHEPU 2018

Assuming that the whole gamma ray emission arises from the interaction of CR with the ISM.

- SNRs above the $\epsilon_{CR} = 1$ ($E_{CR} = E_{SN} = 10^{51} erg$) \rightarrow higher density than derived from X-ray or assumed \rightarrow interacting SNRs are in dense environment.
- Young SNRs $\epsilon_{CR} \sim 0.1 \rightarrow$ IC processes may contribute to their measured luminosity.

2HWC catalog follow ups

- Analysis in Fermi-LAT and Veritas data of 13 sources that are more than 3° away from known TeV sources.
- VERITAS found weak gamma-ray emission in the region of PWN DA 495 coinciding with 2HWC J1953+294
- LAT detected a GeV counterpart of SNR G54.1+0.3, a known TeV source detected by both VERITAS and HAWC associated to a PWN.

Park, N.+ ICRC 2017 Arxiv:1708.05744v1

For more on Fermi-LAT catalogs, see J. Ballet talk Thursday

Gamma-ray pace Telescope

CHERENKOV TELESCOPE ARRAY

CTA: Key Science Projects (KSP)

acc.	What are the sites of hig universe?		
SRs a	What are the mechanis		
0	What role do accelerate formation and galaxy ev		
ents	What physical processe and black holes?		
trem onm	What are the characteris explosions?		
ξ	How intense are radiatio		

		GPS F	PeVatro	ns
יר. גרנ	What are the sites of high-energy particle acceleration in the universe?	~~	~	
0 へ し 、	What are the mechanisms for cosmic particle acceleration?	~	~~	
ר	What role do accelerated particles play in feedback on star formation and galaxy evolution?			
ents	What physical processes are at work close to neutron stars and black holes?	~	~~	
mno ⁻	What are the characteristics of relativistic jets, winds and explosions?	~	~~	
envir	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?			

See S. Funk talk Thursday

The CTA Consortium, Science with the Cherenkov Telescope Array, arxiv:1709.07997

Major sensitivity improvement & wider energy range

Morphology studies for RX J 1713

Simulated morphologies for different emission mechanisms with 50h of observation.

Acero +, ApJ 2017, 840, 74

cherenkov telescope array

cherenkov telescope array

Conclusions

- Fermi has proved to be <u>extremely</u> successful in studying Supernova Remnants
- Pass 8 is allowing detailed studies of the morphology of extended sources, <u>better identifying emitting regions at different energies</u>.
- Detailed spectral studies, with MW information, are increasingly improving our knowledge of <u>emission mechanisms</u>.
- Relevant new results from catalogs.
- CTA observations of the Galactic plane will strongly improve our understanding of the Galactic high energy emission.
- Spatial resolved spectroscopy will be possible given CTA high spatial and spectra resolution.