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High-Energy Interstellar Emission

What is high-energy interstellar emission?

Emission processes Typical definition

m Interstellar emission arises from
interactions between cosmic-rays (CRs)
and the interstellar medium (gas and
radiation).

m CR nuclei
m 7°—decay from interactions with gas
m CR electrons (e and e™)
m Bremsstrahlung from interactions with
gas
m Inverse Compton (IC) from interactions
with radiation.
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What is high-energy interstellar emission?

Emission processes Typical definition

m Interstellar emission arises from
interactions between cosmic-rays (CRs)
and the interstellar medium (gas and
radiation).

m CR nuclei
m 7°—decay from interactions with gas
m CR electrons (e and e™)
m Bremsstrahlung from interactions with
gas
m Inverse Compton (IC) from interactions
with radiation.

Very simple and useful

m “Only” need to know the distribution of CRs, the targets, and the interaction processes.
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Example Interstellar Emission Models

Propagation models Template models

m CRs calculated assuming models for m CRs calculated assuming each template is
sources and propagation. hit with constant CR flux.
m Agrees reasonably well with data — m Additional EEE component with up to

residuals of the order of 10-30% 10% of the emission in the plane.

90°

30°

189° 5 0°

ot ; i
—45°  ¥g0°  _185°% =1f0°
! L ;

—20 —lo 0 lo 20

Ackermann et al. 2012, ApJ, 750, 3 Acero et al. 2015, ApJS, 223, 26

Gulli Johannesson HI & NORDITA

Cosmic Rays and Interstellar Emr



High-Energy Interstellar Emission Cosmic Rays (CRs) Interstellar Medium OP 3D Modelling of the Interstellar Medium Effects on Interstellar Emission Final Remarks

Cosmic Rays — The Origin

Source classes

m Require significant
power and ability to
accelerate particles up
to PeV energies.
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Ackermann et al. 2013, Science, 339, 807
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Cosmic Rays — The Origin

Source classes Pulsars

m Require significant
power and ability to
accelerate particles up

. 18
to PeV energies. i
m Most likely candidates g
are: =
m Supernova remnants
m Pulsars - ™ m
R.A. [deg]
-4 -3 -2 ~1 0 L 2
Significance [sigmas]
Abeysekara et al. 2017, Science, 358, 911
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Cosmic Rays — The Origin

Source classes Stellar Wind

m Require significant
power and ability to
accelerate particles up
to PeV energies.

m Most likely candidates
are:

m Supernova remnants
m Pulsars
m Stellar wind . ..

m Most associated with , .y L
Judy Schmidt - https://www.spacetelescope.org/images/potw1608a/

massive stars.
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Propagation of CRs

Effect of magnetic field

B-field as noodles

m CRs move at the speed of light, but are
affected by magnetic fields in the Galaxy.

m Circular motion around field lines if they
are regular.

HI & NORDITA
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Cosmic Rays (CRs)

Propagation of CRs

Effect of magnetic field

m CRs move at the speed of light, but are
affected by magnetic fields in the Galaxy.

B-field as noodles

m Circular motion around field lines if they
are regular.

m Turbulence causes the field lines to
scramble leading to a diffusive process.

m Isotropic if field is random.
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Propagation of CRs

Effect of magnetic field

m CRs move at the speed of light, but are
affected by magnetic fields in the Galaxy.

B-field as noodles

m Circular motion around field lines if they
are regular.

m Turbulence causes the field lines to
scramble leading to a diffusive process.

m Isotropic if field is random.

m Conditions in the ISM are likely
somewhere in between.

Lots of uncertainties

m Current theory far from complete and
many details are missing.
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Indications of Non-Uniform Diffusion

Johannesson et al. 2016, ApJ, 824, 16

m Results from different secondary species indicate different propagation parameters.
m Hints at non-uniform propagation.
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Indications of Non-Uniform Diffusion

Abeysekara et al. 2017, Science, 358, 911

m HAWC observations of Geminga and PSR B0656+14 require diffusion coefficient that is
two orders of magnitude smaller than estimated from CR secondaries.

m Observations of CR electrons at TeV energies not in agreement with such slow diffusion.
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0 2 4 6 8 10
1.2

Geminga
1.0 ¢ Data
—— BestFitDx 1o

Surface Brightness [10712 TeV cm™2 571 deg~2]

0 10 20 30 40 50
Distance from Pulsar [pc]

Gulli Johannesson HI & NORDITA
Modelling Cosmic Rays and Interstellar Emission




terstellar Emission Cosmic R (CRs) Interstellar Medium GA (0] 3D Modelling of the Interstellar Medium Effects on Interstellar Emission

The Milky Way in several wavebands?
MW at different wavebands

radio continuum (408 MHz)

4 A
—— The ISM

T e m Everything in a galaxy that is not
: a star is considered interstellar

m Gas, dust, radiation, CRs, ...

molecular hydrogen

m It is very dynamic with structures
on all scales.

m The energy density of the
different components of the ISM
are very similar
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X-ray

e = e TR
« Multiwavelength Milky Way
Credit: NASA

m No single component dominates
the dynamics
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the Interstellar Medium Effects on Interstellar Emission

Interstellar Matter

m Provides targets for production of secondary CR
particles and energy losses.

m Split into dust and gas phase with a gas-to-dust
ratio of ~ 100

m Gas provides most of the mass.

m Interstellar gas is mostly hydrogen (~ 70% of mass)
and helium (~ 28% of mass).
m Helium is really difficult to observe.
m Assumed to follow the same distribution as
hydrogen.

m Use 21-cm line emission of HI and 2.6-cm line of
CO to constrain the distribution.
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HI4PI1 survey (Ben Bekhti, N. et al. 2016, A&A 594)
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CO survey (Dame et al. 2001, ApJ 547)
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stellar Emission Cosmic Interstellar Medium
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The Interstellar Radiation Field (ISRF)

Stars and dust

Porter et al. 2008, ApJ 682
m Three main components: 0.
m Stellar light. :
m Dust re-emission of stellar light. L
m The cosmic microwave background. E
m Only directly observable from our position = Need
modeling codes to predict its distribution.
m Stellar distribution and properties. ok
m Dust distribution and properties. E
m Radiative transport. “;4 ' 4 EEere—r “Iy’ e

A u, (um eV em® um)

10 10
A (um)

m Inverse Compton (IC) cross section is angle dependent so we need angular dependent
SEDs throughout the Galaxy.

m A skymap of SEDs at each grid point.
m Significant freedom in model properties, especially in the inner Galaxy.

Gulli Johannesson HI & NORDITA
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GALPROP code for CR transport and diffuse emission

m Tool for modelling and interpreting CR and non-thermal emissions data for Milky Way and
other galaxies in a self consistent and realistic way.

m GALPROP can be downloaded/installed locally, or run from a web-browser at the
GALPROP website: http://galprop.stanford.edu
m Newly released v56 includes among other things
m Spatial variation in diffusion and re-acceleration.

m Generalized source distributions and spectral models.
m 3D gas and ISRF models.
m Improved solvers for propagation — dramatic performance increase.
Gulli Johannesson HI & NORDITA

Modelling Cosmic Rays and Interstellar Emission



http://galprop.stanford.edu

High-Energy Interstellar Emission Cosmic Ra; ) Interstellar Medium GALPROP 3D Mod g of the Interstellar Medium Effects on Interstellar Emission Final R

GALPROP code for CR transport and diffuse emission

m Tool for modelling and interpreting CR and non-thermal emissions data for Milky Way and
other galaxies in a self consistent and realistic way.

m GALPROP can be downloaded/installed locally, or run from a web-browser at the
GALPROP website: http://galprop.stanford.edu

m Newly released v56 includes among other things

m Spatial variation in diffusion and re-acceleration.
Generalized source distributions and spectral models.
3D gas and ISRF models.

Improved solvers for propagation — dramatic performance increase.

A little warning

m Note that there is no such thing as “the” GALPROP model.

Gulli Johannesson HI & NORDITA
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Example distribution of HI in external galaxies (THINGS)

[54]  The HI Nearby Galaxy Survey (THINGS)
F. Walter, E. Brinks, E. de Blok, F. Bigiel, M. Thornley, R. Kennicutt

Image courtesy of NRAO/AUI and Fabian Walter, Max Planck Institute for Astronomy
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3D Interstellar radiation field (ISRF)
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m R12 includes stellar disc, ring, bulge, 4/2 major/minor arms + dust disc with inner hole
toward GC.

m F98 includes 'old’ and 'young' stellar discs that are warped, spheroidal bar, and warped
dust disc with inner hole toward GC.

m Full radiation transfer modelling using FRaNKIE code. Both models consistent with data.

m Porter et al. ApJ 846, 67 (2017) /arxiv:1708.00816
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3D Modelling of the Interstellar Medium

3D ISRF in the plane

15 10 10
10
E 0 O ‘ | g | ;
- - £
o m Different integrated energy
o T density distributions that reflect

X (kpe) X (kpe)

the stellar and dust distributions.

F98 (X/kpe, Y/kpe) = (0, 0) ——

7 PR— m In and about the inner Galaxy
1 [ there is a factor ~ 5 difference

between the models.

Energy Density (eV cm™? i
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New 3D distributions for interstellar gas
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R o m Forward-folding fitting method.
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m Johannesson et al. 2018, ApJ, 856, 45
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3D models for interstellar emission

m GALPROP v56 + 3D ISRF + 3D gas + 3D CR source density.

m 3 CR source density models: CR power injected according to 'Pulsars’ (2D), 50% Pulsars
+ 50% spiral arms, 100% spiral arms.

m Propagation parameters adjusted for each to reproduce measurements of CRs near Earth.
® The models are not tuned to 7-ray data.
m Reference case: 2D CR, 2D gas, 2D ISRF

15
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3D Modelling of the Interstellar Medium

CR propagation tuning

T H
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2ol + ot | 2107 g r— injection spectra to match local
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3D Modelling of the Interstellar Medium

CRs in the plan

. 0.40
0.35
m The interpretation of local data now strongly
- 030 depends on our position relative to the 3D structure.
g g . . .
= 025 a m More secondaries in dense gas regions while more
primaries near the CR sources.
020 m Extent of these regions depends on the estimated
propagation.
0.15
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Effects on Interstellar Emission

Interstellar Emission for SA100 + R12 + 2D gas

m Fractional residual maps (model/reference - 1) at 10 MeV (left) and 1 GeV (right).

m Most of the enhancement in the IC component. Squared effect because spiral arms of CR
sources and ISRF align.

m The "hole’ at the GC is because the spiral arm cut off for R < 4 kpc.

Gulli Johannesson HI & NORDITA
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Interstellar Emission for SA100 + 2D ISRF + 3D gas

-0.3 -0.2 0.1 0.0 0.1 0.2 0.3

m Fractional residual maps (model/reference - 1) at 30 MeV (left) and 1 GeV (right).

m Similar features as before but more confined to the plane because diffusion coefficient is
smaller and ISRF is 2D.

m The CR e~ injection spectrum is softer at low energies which produces more low energy
~-rays.

Gulli Johannesson
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Effects on Interstellar Emission

Interstellar Emission for SA100 + R12 + 3D gas

—0.50 —0.25 0.00 0.25 0.50 —0.50 -0.25 0.00 0.25 0.50

m Fractional residual maps (model/reference - 1) at 10 MeV (left) and 1 GeV (right).

m A combination of the effects of all 3 show significantly stronger features for all emission
processes.

m Note the different scale compared to previous 2 slides.
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Effects on Interstellar Emission

Possible interpretations

m Fractional residuals for (SA100 + R12 + 2D gas) (left) compared to fractional residual
map from Ajello et al. (2016) ApJ 819, 44 using 62 months of Fermi-LAT data 1 - 3.16
GeV.

m Clear similarities between some of the features at about the correct magnitude.

Gulli Johannesson HI & NORDITA
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Filling in the GC hole

- 15
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Effects on Interstellar Emission

Hole has been filled

m Fractional residuals using SA100 + 3D ISRF + 2D gas for R12 bulge (left) and F98 bar
(right) at 1 GeV.

m CR power injected in bulge ~ 25 times smaller than in arms.

m Hint of a asymmetric bulge component that could explain the increased IC needed in
Ajello et al. (2016) ApJ 819, 44.

Gulli Johannesson HI & NORDITA
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Effects on Interstellar Emission

Hole has been filled

03 02 a1 0o a1 0z a3

Ajello et al. 16 (no masks)
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Hole has been filled again

(right) at 1 GeV.

Gulli Johannesson

m Fractional residuals for using SA50 + 3D ISRF + 3D gas for R12 bulge (left) and F98 bar
m CR power injected in bulge/bar same as before but the extra component in the GC is even
brighter.
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Effects on Interstellar Emission

Hole has been filled again

03 02 a1 0o a1 0z 0x

Ajello et al. 16 (no masks)
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Final Remarks

Summary

m New 3D models for ISM density distributions have been developed: ISRF (Porter et al.)
and Gas (Johannesson et al.).

m New GALPROP release v56 with many additions and optimisations: specific focus
improving performance for full 3D CR and interstellar emission calculations.

m Modelling with GALPROP v56 release using 3D CR source and ISM density models show
new features in residual maps compared to 2D-based reference calculations — interstellar
emission sensitive to 3D spatial structure of CRs, gas, and ISRF in ISM.

m The 3D models provide plausible explanation for the puzzling results from the analysis
based on 2D axisymmetric models: CR sources in spiral arms and central bulge/bar in
combination with 3D ISM models are the key.

Gulli Johannesson HI & NORDITA
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The End
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Interstellar medium

Secondary CR particles

m Interactions between CRs and interstellar matter results in “secondary” CR particles.
m The ratio of “secondary” to “primary” CR particle indicates effect of propagation.

m Need to know the production cross sections accurately to properly use them.

AMS results

0.4 T T T x10°
0.3 M, 2 Helium
0.2 e :g .E - oryaenan ! ‘é 3
. T wildad 4 ]
% | ""‘mu | ;‘2 oy tady E
0.1 nlyd ] E? Moagy
~.I.1\ ] E: hl’“#l; ]
ggg [“1; s F e Littum 200 "’i!ﬁi ¥ ¢ h' —:
o0s 1 o :
008 1ID 1(I)2 1:)3 %30 1:1’ 210° 1:1’ 2:10°
Rigidity [GV] Rigidity R [GV]
Phys. Rev. Lett. 117, 231102 (2016) Phys. Rev. Lett. 120, 021101 (2018)
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Interstellar medium

Kinematic Distances and Rotation Curves

Velocity model

m Doppler shift of emission lines used to place gas

Illustration

given a model for its velcotiy field in the Galaxy. SUNE 7
m Cylindrical rotation is a good approximation for the -
gas motion.
2
Vs LOS

[va| = |vs]
HI & NORDITA

Gulli Johannesson
Modelling Cosmic Rays and Interstellar Emission




Interstellar medium

Kinematic Distances and Rotation Curves

Velocity model

m Doppler shift of emission lines used to place gas :
given a model for its velcotiy field in the Galaxy. SUNE =

Illustration

m Cylindrical rotation is a good approximation for the
gas motion.

Some known issues Vo

m Near—far ambiguity in the inner Galaxy.
m Does not work for directions near dotted line.

m Limited distance resolution because of thermal and
turbulent motion.
. . v
m Non—circular motion. 3 LOS
m Difficult to measure rotation curve, especially in the
outer Galaxy. [va| = |vs]

Gulli Johannesson HI & NORDITA
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Interstellar medium

Interstellar Matter

Components by mass
m Provides targets for production of secondary CR particles and
energy losses.

Split into dust and gas phase with a gas-to-dust ratio of
~ 100

m Gas provides most of the mass.

st (1%)

/)

m Interstellar gas is mostly hydrogen (~ 70% of mass) and
helium (~ 28% of mass).
m Helium is really difficult to observe.
m Assumed to follow the same distribution as hydrogen.

Is (1.5%)

Use 21-cm line emission of HI and 2.6-cm line of CO to
constrain the distribution.

Gulli Johannesson
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Interstellar medium GALGAS code ~y-ray maps

Example distribution of H1 in external galaxies

% The HI Nearby Galaxy Survey (THINGS)
F. Walter, E. Brinks, E. de Blok, F. Bigiel, M. Thornley, R. Kennicutt

Image courtesy of NRAO/AUI and Fabian Walter, Max Planck Institute for Astronomy
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Interstellar medium GALGAS code

Observed distribution of H1 in the Milky-Way

10% cm?

Gulli Johannesson HI & NORDITA
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Interstellar medium

Obtaining 3D information

m Under the assumption that the gas is in spherical
rotation around the Galactic center we can easily
turn velocity into distance

Visgr =sinlcosb R—RQG(R) - 0O(Rs)

where ©(R) is the Galactic rotation curve, Ry is the
radius of the sun and / and b are Galactic longitude
and latitude, respectively.

m Vsr is the velocity measured with respect to the
local standard of rest that is moving in a circular
orbit around the Galactic center.

Gulli Johannesson

Figure showing V;sr in the Galactic
plane for a fixed rotation curve.
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Interstellar medium
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GALGAS code

Our Approach - Forward Folding Model

m Parameterized model that is integrated along lines-of-sight to create emission profiles that
can be directly compared to data.
m GALGAS code handles the integration and comparison.
m Model built from simple geometrical components.
m Has several advantages:
m Automatic interpolation over longitude ranges around / = 0° and / = 180°.
m Smoothness of model enforced, no fingers of god.
m Complexity of model controlled, effects of individual components on CR propagation can be
studied.
m Easier to explore complex models for gas rotation.

m And some disadvantages:

m Need a lot of components to capture the complex structure of the interstellar gas.
® The number of model parameters quickly grows and model tuning becomes very time
consuming.
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~y-ray maps

~-ray maps for SA100 + 2D ISRF + 3D gas
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m IC maps at 30 MeV (left), 1 GeV (center), and 100 GeV (right).

m Effect of spiral arms visible but a bit fuzzy because of diffusion.

Gulli Johannesson HI & NORDITA

Modelling Cosmic Rays and Interstellar Emission



	High-Energy Interstellar Emission
	Cosmic Rays (CRs)
	Interstellar Medium
	GALPROP
	3D Modelling of the Interstellar Medium
	Effects on Interstellar Emission
	Final Remarks
	Appendix
	Interstellar medium
	GALGAS code
	-ray maps


