

Latest Results from the Pierre Auger Observatory

Bruce Dawson The University of Adelaide, Australia

Photo: Steven Saffi, University of Adelaide

Pierre Auger Collaboration

About 500 members from 19 countries

The Pierre Auger Observatory

The Pierre Auger Observatory

Auger Anisotropy ICRC17: $9.0 \times 10^4 \text{ km}^2 \text{ sr yr}$ Auger Spectrum ICRC17: $6.7 \times 10^4 \text{ km}^2 \text{ sr yr}$ TA Spectrum ICRC17: $0.8 \times 10^4 \text{ km}^2 \text{ sr yr}$ AGASA

Exposure dominated by SD array.

Auger is a Hybrid detector - FD calibrates SD energy scale

Energy Spectrum

Combined Energy Spectrum

Combined Energy Spectrum

Mass composition

Mass composition

Mean X_{max} from fluorescence detectors

Mean X_{max} from fluorescence detectors

Mean X_{max} from fluorescence and surface detectors

Mean Xmax and fluctuations in Xmax (latter from from fluorescence detectors only)

lines: air shower simulations using post-LHC hadronic interaction models

Fits of full X_{max} distributions with (p-He-N-Fe) mixtures

From FD

Mass fractions

Astrophysical interpretation: very simple models

 $\frac{dN}{dE} = J_0 \sum_{\alpha} f_{\alpha} E_0^{-\gamma} \begin{cases} 1 & \text{for } E_0/Z_{\alpha} < R_{\text{cut}}, \\ \exp(1 - \frac{E_0}{Z_{\alpha} R_{\text{cut}}}) & \text{for } E_0/Z_{\alpha} \ge R_{\text{cut}} \end{cases}$

 E^{3} [eV² km⁻² sr⁻¹ yr⁻¹]

Simulate propagation of CR particles in cosmic photon fields

- match to measured spectrum and mass composition at Earth
- 1D propagation through photon fields

18.5

- Homogeneous distribution of identical sources of p, He, N, (Si), Fe
- CR injection = power law + rigidity cutoff e model shortest 68% int. best fit average 1.221.27 $1.20 \div 1.38$ Similar scenarios studied by Aharonian Ahlers Allard, Alarsio, Bergzinsky $_{69 \div 18.77}$ Blasi, Hooper, Olinto, Parizot, Taylor, $\int_{f_{\rm H}(\%)}^{-300}$ 6.4 $0.0 \div 18.9$ 15.1 $f_{\rm He}(\%)$ 46.7 $18.9 \div 47.8$ 31.69.4 11.2 $5.4 \div 14.6$ udy incl. model and data uncertainties: $-0.90 \div -0.48$ -0.63-0.69t al. [Auger Collab.] JCAP (2017) 1704/038. +0.00+0.12 $\Delta E / \sigma_{\rm syst}$ $-0.57 \div +0.54$ 1220.5 B) ¹⁰⁵ 20 20 20 1020 19.5 10 0 - D 0.5 -0.5 0 1.5 19

0

0.5

 $\frac{dN}{dE} = J_0 \sum_{\alpha} f_{\alpha} E_0^{-\gamma} \begin{cases} 1 & \text{for } E_0/Z_{\alpha} < R_{\text{cut}}, \\ \exp(1 - \frac{E_0}{Z_{\alpha} B_{\text{cut}}}) & \text{for } E_0/Z_{\alpha} \ge R_{\text{cut}} \end{cases}$

"Reference" model: SimProp, PSB x-sect, Gilmore '12 EBL, EPOS-LHC

1.5

2.5

0 VD - D

14

* -transferred intermediation: adding some extra reality

 12 e.g. Wittkowski [Auger Collab.] ICRC 2017 10 4D propagation (incl. source evolution) with CRPropa3

extragalactic B fields, large scale structure (Dolag `12), Gilmore `12 8 EBL, EPOS-LHC

our					
	Source properties	4D with EGMF	4D no EGMF	1D no EGMF ¹	
log	γ	1.61	0.61	0.87	previous
	$\log_{10}(R_{\rm cut}/{\rm eV})$	18.88	18.48	18.62	slide
	f _H	3 %	11 %	0 %	
	f _{He}	2 %	14 %	0 %	
Homo	f _N	74 %	68 %	88 %	
	f _{Si}	21 %	7 %	12 %	
	f _{Fe}	0 %	0 %	0 %	

¹Homogeneous

Anisotropy

g

Indication of Intermediate-scale Anisotropy

A. Aab et al. [Auger Collab.] ApJ. Lett. 833 (2018) L29

Analysis strategy:

• arrival direction data, D

- sky model from source candidates, M_i $M_i = (\text{flux model}) \times (\text{attenuation model}) \times (\text{angular smearing}) \times (\text{exposure})$
- null hypothesis: isotropy M₀
- single population signal model

 $M = (1 - \alpha)M_0 + \alpha M_i$

- test statistic:
 - ratio of likelihoods of model-data comparison

 $TS = 2\ln \left(P(D | M) / P(D | M_0) \right)$

think: $\Delta \chi^2$ of (isotropy + signal) vs isotropy

- *p*-value from Wilks' theorem: $p(TS) = p_{\chi^2}(TS, \Delta ndf)$
- a large TS means
 - *M* describes *D* much better than *M*₀
 - *M*⁰ excluded at *p* (not: *M* "proven" at *p*)

UHECR Source "Suspects"

- Swift-BAT X-ray-selected galaxies, D < 250 Mpc, $\Phi > 1.3 \cdot 10^{-11} \frac{\text{erg}}{\text{cm}^2 \text{ s}}$, w : 14-195 keV
- ► 2MRS IR-selected galaxies, D > 1 Mpc, w : K-band
- SBG: 23 nearby starburst galaxies, $\Phi > 0.3$ Jy, w : radio at 1.4 GHz
- > γ AGN: 17 2FHL blazars and radio galaxies, D < 250 Mpc, $w : \gamma$ -ray 50 GeV-2 TeV.

w: UHECR flux proxy, *Swift-*BAT and 2MRS previously tested (ApJ **804** (2015) 172), extragal. γ -ray sources γ AGN and SBG.

Flux attenuation: depends on mass fractions, distance

starburst

40 60 no att. no att. 35 A) EPO1st A) EPO1st 50 B) EPO2nd B) EPO2nd C) Sib1st C) Sib1st 30 flux weight [%] flux weight [%] 40 25 20 30 15 20 10 • 10 5 0 0 NGC1365 Arp299 NGC4945 Arp220 Mkn501 NGC891 Mrk231 IC310 Mkn421 M82 M83 IC342 M51 CenA NGC1275 3C264 APLibrae TXS0210+515 IZw187 NGC3079 NGC1068 NGC6240 M87 TXS0149+710 1ES1959+650 GB6J0601+5315 NGC253 NGC6946 NGC2903 NGC5055 NGC3628 NGC4631 NGC3556 NGC660 NGC2146 PKS0229-581 1ES2344+514 Mkn180 PKS0625-35 NGC3627

 γ AGN

composition scenarios from Pierre Auger Coll., JCAP 1704 (2017) 038 + CRPropa3

name	$\lg(R_{\sf max}/{\sf V})$	f_{P}	f_{He}	$f_{\sf N}$	f_{Si}	γ
EPO1st	18.68	0.000	0.673	0.281	0.046	0.96
EPO2nd	19.88	0.000	0.000	0.798	0.202	2.04
Sib1st	18.28	0.702	0.295	0.003	0.000	-1.50

Data-Model fit: angular smearing and anisotropic fraction

$\label{eq:skymodel} \textbf{Sky Model} ~ (flux) \times (attenuation model)_A \times (angular smearing), ~ gal.~ coord.$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. A

Model Flux Map - 2MRS > 1 Mpc - E > 38 EeV - Sc. A

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. A

note region with zero exposure

$\label{eq:skymodel} Sky Model \ \ (flux) \times (attenuation \ model)_A \times (angular \ smearing), \ \ super-gal. \ coord.$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. A

Model Flux Map - 2MRS > 1 Mpc - E > 38 EeV - Sc. A

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. A

$\label{eq:shared} \textbf{Sky Model} ~ (flux) \times (attenuation ~ model)_B \times (angular ~ smearing), ~ super-gal.~ coord.$

Model Flux Map - Swift-BAT - E > 39 EeV - Sc. B

Model Flux Map - 2MRS > 1 Mpc - E > 38 EeV - Sc. B

Model Flux Map - Active galactic nuclei - E > 60 EeV - Sc. B

Test Statistic (TS) vs Energy

starburst model fits data better than isotropy, significance of 4 σ^* .

 $^{*}P_{\chi^{2}}(\mathrm{TS,~2})$ penalized for energy scan

Detail of results of the sky models

A. Aab et al. [Auger Collab.] ApJ. Lett. 833 (2018) L29

Test hypothesis	Null hypothesis	Threshold energy ^a	TS	Local p-value $\mathcal{P}_{\chi^2}(\mathrm{TS},2)$	Post-trial p-value	1-sided significance	AGN/other fraction	SBG fraction	Search radius
	ISO	39EeV	24.9	3.8×10^{-6}	3.6×10^{-5}	4.0σ	N/A	9.7%	12.9°
γ AGN + SBG + ISO	γ AGN + ISO	39EeV	14.7	N/A	1.3×10^{-4}	3.7σ	0.7%	8.7%	12.5°
\rightarrow γ AGN + ISO	ISO	60EeV	15.2	5.1×10^{-4}	3.1×10^{-3}	2.7σ	6.7%	N/A	6.9°
γ AGN + SBG + ISO	SBG + ISO	60EeV	3.0	N/A	0.08	1.4σ	6.8%	$0.0\%^{b}$	7.0°
Swift-BAT + ISO	ISO	39EeV	18.2	1.1×10^{-4}	8.0×10^{-4}	3.2 σ	6.9%	N/A	12.3°
<i>Swift</i> -BAT + SBG + ISO	<i>Swift</i> -BAT + ISO	39EeV	7.8	N/A	5.1×10^{-3}	2.6σ	2.8%	7.1%	12.6°
2MRS + ISO	ISO	38 EeV	15.1	5.2×10^{-4}	3.3×10^{-3}	2.7σ	15.8%	N/A	13.2°
2MRS + SBG + ISO	2MRS + ISO	39EeV	10.4	N/A	1.3×10^{-3}	3.0σ	1.1%	8.9%	12.6°

^aFor composite model studies, no scan over the threshold energy is performed.

^bMaximum TS reached at the boundary of the parameter space.

ISO: isotropic model.

starburst model fits data better than isotropy, significance of 4 σ^* .

 $^{*}P_{\chi^{2}}(\mathrm{TS,~2})$ penalized for energy scan

Data vs Model for SBG and γ AGN (galactic coords)

top: starburst galaxies

bottom: γ AGN

All are "excess" maps: best-fit isotropic component is subtracted.

Observation of Dipolar Anisotropy above 8 EeV

A. Aab et al. [Auger Collab.] Science 357 (2017) 1266

Dipole in galactic coordinates

 $km^{-2} sr^{-1} yr^{-1}$

0.42

0.38

0.46

180

Strong evidence for extragalactic origin at these energies - dipole direction 125 degrees from GC.

Dipole could be the result of

- single source + diffusion
- isotropic source distribution (some sources always closer)
- anisotropic source distribution (stronger dipole)

-90

90

Might expect the strength of the dipole to depend on E (for ~fixed charge).

Dipole strength and direction can be modified by Galactic MF.

-180

Dipole in galactic coordinates

Strong evidence for extragalactic origin at these energies - dipole direction 125 degrees from GC.

Dipole - some energy dependence?

A. Aab et al. [Auger Coll.] Submitted to ApJ (2018) arXiv:1808.03579

(only 8-16 EeV bin has a statistically significant result)

Upgrade to the Auger Observatory - AugerPrime

- mass composition information for every event

complementarity of light responses used to discriminate e.m. and muonic components

 $S_{\mu,\text{WCD}} = a S_{\text{WCD}} + b S_{\text{SSD}}$ $S_{\text{em,WCD}} = c S_{\text{WCD}} + d S_{\text{SSD}}$

(AugerPrime design report 1604.03637)

Upgrade to the Auger Observatory - AugerPrime

- mass composition information for every event

To increase exposure with composition sensitive data Surface array needed!

Duty cycle: 100% (SD) vs 15% (FD)

complementarity of light responses used to discriminate e.m. and muonic components

Moreover

- Upgraded and faster electronics
- Extension of the dynamic range
- Cross check with underground buried AMIGA detectors
- Extension of the FD duty cycle

Upgrade to the Auger Observatory - AugerPrime

Status and plans for *AugerPrime*

- Composition measurement at 10²⁰ eV
- Composition selected anisotropy studies
- Particle physics with air showers

LDF of Ev.163076179300

2016: engineering array; 12 stations 2018-19: deployment 2019-25: data taking (40,000 km2 sr yr)

30

Summary

- Spectrum and composition
 - highest exposure measurement of spectrum , strong flux suppression
 - Composition with FD and SD
 - light composition at ankle
 - mixed composition at UHE
 - hints of galactic Fe at lowest energies?
 - compatible with rigidity-dependent cut-off at sources
- Anisotropy
 - observation of dipole anisotropy E > 8 EeV
 - indication of medium-scale anisotropy, E > 39 EeV
- Other results (no time)
 - UHE Neutrino and gamma-ray limits constraining protondominated sources
 - Hadronic interactions (normal UHE cross-sections, muon deficits in models)
- AugerPrime Upgrade

