# Air-Shower Observations of Cosmic Rays in the PeV to EeV Energy Range





#### High-energy cosmic ray spectrum







#### Cosmic Rays: 1958



The "first knee"

G.V.Kulikov & G.B.Khristiansen

**Soviet Physics JETP** Volume 35(8), No 3, March 1959

measured N<sub>ch</sub> spectra

hodoscope counters in a 20x20 m<sup>2</sup> array

"the observed spectrum is a superposition of the spectra of particles of galactic and metagalactic origin"



### **Galactic cosmic rays**

Propagation through galaxy (B≈3μG?)

Acceleration of cosmic rays in supernova remnants

Affirmation by H.E.S.S. Nature 531, 476 (2016)

# Direct or indirect measurement



#### **Extensive Air Showers - schematic**







**SKIT** 

## KASCADE

#### **KArlsruhe Shower Core and Array DEtector**

- Energy range 100TeV 80PeV
- Since 1995

Large number of observables: electrons, muons@4 thresholds, hadrons

T.Antoni et al. NIM A513 (2003) 490









#### **CORSIKA (COsmic Ray SImulations for KAscade)**







#### **KASCADE : energy spectra of single mass groups**







Searched: E and A of the Cosmic Ray Particles Given:  $N_e$  and  $N_\mu$  for each single event → solve the inverse problem

 $\frac{dJ}{d\lg N_e \, d\lg N_{\mu}^{tr}} = \sum_A \int_{-\infty}^{+\infty} \frac{dJ_A}{d\lg E} \left[ p_A(\lg N_e, \lg N_{\mu}^{tr} \mid \lg E) \, d\lg E \right]$ 

- kernel function obtained by Monte Carlo simulations (CORSIKA)
- contains: shower fluctuations, efficiencies, reconstruction resolution

**KASCADE** collaboration, Astroparticle Physics 24 (2005) 1-25

#### **KASCADE: the rigidity knee**

- same unfolding but based on different hadronic interaction models embedded in CORSIKA



- all-particle spectrum similar
- general structure similar: knee by light component
- -relative abundances very different for different high-energy hadronic interaction models but for many models: proton not the most dominant component!

KASCADE collaboration, Astrop.Phys. 24 (2005) 1 , Astrop.Phys. 31 (2009) 86





#### CMS @ LHC

**Charged particle distribution in pseudorapidity** 



(data from all LHC experiments, CMS shown as example)

D'Enterria et al., Astropart. Phys. 35, 2011

D'Enterria, Pierog, JHEP 08 (2016) 170

**SKIT** 

#### Result KASCADE -> Motivation KASCADE-Grande



THE WEIT



#### **KASCADE-Grande**

- Energy range: 100TeV 1EeV
- Area: 0.5 km<sup>2</sup>
- Grande: 37×10 m<sup>2</sup> plastic scintillation detectors
- Nch + total muon number

W.D.Apel et al, Nucl.Instr. and Meth. A620 (2010) 202





#### 2-dimensional shower size spectrum



determination of primary energy
separation in "electron-rich" and "electron-poor" event

$$log_{10}(E) = [a_p + (a_{Fe} - a_p) \cdot k] \cdot log_{10}(N_{ch}) + b_p + (b_{Fe} - b_p) \cdot k$$

 $k = (\log_{10}(N_{ch}/N_{\mu}) - \log_{10}(N_{ch}/N_{\mu})_{p}) / (\log_{10}(N_{ch}/N_{\mu})_{Fe} - \log_{10}(N_{ch}/N_{\mu})_{p})$ 





### KASCADE-Grande energy spectra of mass groups



• steepening due to heavy primaries (3.5σ)

hardening at 10<sup>17.08</sup> eV
(5.8σ) in light spectrum

• slope change from  $\gamma = -3.25$  to  $\gamma = -2.79!$ 

Phys.Rev.Lett. 107 (2011) 171104 Phys.Rev.D (R) 87 (2013) 081101



#### **KASCADE-Grande: model dependence**



- Spectra of heavy primary induced events
- → a knee structure at the heavy component
- → relative abundances different for different high-energy hadronic interaction models

#### Advances in Space Research 53 (2014) 1456





#### **KASCADE-Grande: Combined Analysis**



for KASCADE: additional stations at larger distances

for Grande: additional 252 stations

Sven Schoo, KIT, PhD 2016

#### ➔ higher accuracy

➔ higher energies



#### **KASCADE-Grande: Combined Analysis** resulting energy spectra based on hadronic interaction models



 Post LHC models light primary interactions okay? heavy primary interactions show differences

**SKIT** 

#### **KASCADE-Grande: combined analysis Check Hadronic Interaction Models**



- assume a composition model: H4a by Tom Gaisser
- two selections: core located in KASCADE, core located in Grande
   we measure "different" muons





#### **KASCADE-Grande: Combined Analysis** Test of models



- One model, but two selections: Simulations okay, but strong differences in data (similar result for QGSJet-II.04, EPOS-LHC, SIBYLL 2.3)
- ➔ Muon component not sufficiently described





21

QGSJet-II.04

#### **Connection Cosmic Rays and Neutrinos**





Slope of proton in the model same as slope of "light" spectrum after ankle in KASCADE-Grande

IceCube PeV neutrinos from 100 PeV extragalactic protons?

IceCube measured PeV-neutrinos

➔ PeV-v from IceCube might correspond to 10<sup>17</sup>eV protons



IceCube Lab



#### Limits on diffuse Gamma-ray Flux



- selection of muonpoor events

- limits on ratio of primary gammas to hadrons

- limits on diffuse Gamma-ray flux constrain the origin of IceCube-neutrinos

← Reject the model of IceCube excess coming from <20kpc in the Galaxy





#### Anisotropy

- study large-scale anisotropies by the East-West method
- limits on amplitude
- phase determined

← Confirms flip in phase at around 100 TeV - 1 PeV

A. Chiavassa et al., Nucl.Part.Phys.Proc. 279-281 (2016) 56-62 KASCADE-Grande coll.; in preparation

Andreas Haungs







#### Tunka-133 -> TAIGA







#### IceTop → Enhancements / IceCube-Gen2



- LDF + particle density at 125m
- in-ice high-energy muons

Phys Rev D (2013) accepted - dx.doi.org/10.1016/j.asr.2013.05.008 ?????







- Structures of all-particle spectra similar (in the level of 15%)
- first composition results are in agreement with KASCADE-Grande





## **UHECR** experiments











#### experiments in the knee energy range

#### • (Tibet, ARGO) LHAASO

CR around knee with multi-detector installation China - with participation of France. Italv

#### • TAIGA/ Tunka/HiSCORE/Tunka-Taiga-Rex

CR around knee and up to ankle with multi-detector installation Russia - with participation of Germany, more?

#### IceCube/IceTop – (Gen2)

Ice-Cherenkov array on top of IceCube USA – with important European contribution Advanced plans for Gen2-surface (veto) array

#### • GRAPES

KASCADE-like operating array at 2300m altitude India - with participation from Japan

#### • HAWC

High-Altitude Gamma-ray Observatory in Mexico Extension with outer trigger for better CR detector

#### • NEVOD

Nevod / Decor complex now with air shower array











Tutul IIII

# Tunka / Tunka-Rex / HiScore

# Nevod / Decor

# leeGube / leeTop (-Gen2)

11







## https://kcdc.ikp.kit.edu



## https://kcdc.ikp.kit.edu/

• KCDC = publishing research data from the KASCADE experiment

• Motivation and Idea of Open Data: general public has to be able to access and use the data the data has to be preserved for future generations

#### • Web portal:

providing a modern software solution for publishing KASCADE data for a general audience In a second step: release the software as Open Source for free use by other experiments

#### Data access:

Version NABOO is released (Feb.2017) 4.3-10<sup>8</sup> EAS events are available including energy deposits corresponding simulations >90 spectra of EAS experiments





#### Submitted to: Eur.Phys.J.C (arXiv:1806.05493)





#### Towards a



#### **Motivation:**

- Astroparticle Physics requests for multi-messenger analyses.
- This needs an experiment-overarching platform
- High demand in (German and international) community
- APP Observatories are globally distributed (no CERN or ESA)

#### Important steps:

- Develop an open science system (based on KCDC and the LHC-Tier environments)
- Develop solutions of distributed data storage algorithms and techniques
- Allowing community to perform multi-messenger analyses with deep learning methods
- Providing platform for public access to scientific data





## **Conclusions – open points**

- Light and heavy knee established
- Light ankle probably there
- Difficult to compare experiments due to different observables what is contribution of MHz-Radio?
- Yet no conclusive result due to insufficient hadronic interaction models
- Continuation in improving hadronic interaction models required
- > Still problem: absolute mass scale
- Confrontation of the data with astrophysical models still challenging
- Future: (mass dependent) Anisotropy studies
- > Future: Multi-messenger Analyses (cosmic rays,  $\gamma$ -rays, neutrinos)
- > IceTop(-Gen2), TAIGA, LHAASO, GRAPES, TALE, PAO, NEVOD, HAWC?
- Global Data Centre for Astroparticle Physics envisaged



