

prompt emission in Gamma-Ray Bursts recent findings and physical implications *Lara Nava*

The origin of

Marie Skłodowska-Curie Fellow

INAF - OABrera INAF - OATrieste INFN - Trieste

GRBs: the standard model

Most important instruments for GRB prompt emission studies

CGRO/**BATSE**: prompt emission in the range 20 keV - 2 MeV from **2700** GRBs

Fermi/**GBM**: prompt emission in the range 8 keV- 20 MeV from **2200** GRBs

*The Neil Gehrels Swift Observatory Swift/***BAT**: 15-150 keV from **1200** GRBs

The typical GRB prompt spectrum

Typical values

- **α~-1**
- β~-2.5

E_{peak} ~ few keV - few MeV

Prompt emission: possible energy reservoirs

- Itermal energy radiated at the photosphere (Mészáros & Rees 2000; Daigne & Mochkovitch 2002; Giannios & Spruit 2007; Pe'er 2008; Beloborodov 2010)
- kinetic energy that can be extracted by shock waves propagating within the outflow and then radiated by shockaccelerated electrons (internal shocks, Rees & Mészáros 1994; Kobayashi et al. 1997; Daigne & Mochkovitch 1998)

magnetic energy that can be dissipated via the reconnection of field lines and then radiated by shock-accelerated electrons (Thompson 1994; Meszaros & Rees 1997; Spruit et al. 2001; Drenkhahn & Spruit 2002; Lyutikov & Blandford 2003; Giannios & Spruit 2005)

Prompt emission:

standard model

Prompt emission: processed thermal photons

thermal energy radiated at the photosphere

photons undergo multiple scatterings with more energetic electrons and increase their energy

Prompt emission:

magnetic models

magnetic outflow (Poynting-flux-dominated).

ICMART model Zhang and Yan (2011) multiple internal collisions can entangle magnetic field and trigger reconnection events, converting a fraction of magnetic energy to radiation. Rapid variability can be produced even if R>10¹⁵cm

Prompt emission observations

Inconsistency with synchrotron radiation: the alpha problem

Typical prompt spectral shape and fitting models

The phenomenological picture

Inconsistency with synchrotron interpretation

Recent progresses

The Sample

GRBs with BAT+XRT simultaneous observations of the prompt emission

We found **34 GRBs** with prompt BAT+XRT observations and large S/N to allow spectral analysis

Results can be found in:

- 1. 14 are bright enough to allow time-resolved analysis Oganesyan, Nava, Ghirlanda, Celotti, 2017, ApJ
- 2. additional 20: only time-integrated analysis Oganesyan, Nava, Ghirlanda, Celotti, in press, arXiv:1710.09383

Example of spectral fit including XRT data GRB 140512A

CPL (Cutoff PL) model:

 $\chi^2_{\rm red} = 1.28 \, (\rm d.o.f. = 480)$

$> 8\sigma$ improvement

CPL + break at low energy: $\chi^2_{red} = 0.93 (d.o.f. = 478)$ $E_{break} = (7.2 \pm 1) \text{ keV}$ $E_{peak} = (532 \pm 150) \text{ keV}$

Spectral models

we fit all these models to all spectra in the sample

Spectral models

we fit all these models to all spectra in the sample

ComparisonOganesyan, Nava, Ghirlanda, Celotti, 2017, ApJbetween observed spectral shapeand synchrotron spectrum

Spectral fit: full sample time resolved analysis

Spectral low-energy breaks in *Fermi*/GBM GRBs

Spectral breaks in Fermi bursts?

Ravasio,..., LN et al., 2018, A&A, 613A, 16

GRB 160625B

GBM GRB 160625B time-resolved analysis

More on low-energy spectral breaks in Fermi/GBM GRBs

A spectral analysis of the **10 brightest long GBM** GRBs is in progress. Preliminary results show that **most of them** require a fitting model including a break (15-100 keV) and an additional, hard power-law below the break

Ravasio et al., 2018, in preparation

Are we observing synchrotron radiation in moderately fast cooling regime?

 $V_c \sim V_m$

This situation has been already considered by theoretical models moderately fast cooling regime first invoked to explain spectra as hard as -2/3:

> Derishev 2007 Kumar & McMahon 2008 Daigne et al. 2011 Beniamini & Piran 2013,2014 Uhm & Zhang 2014

Are we observing synchrotron radiation in moderately fast cooling regime?

 Γ (bulk motion)

N,
$$\gamma$$
 (electrons) +

B (magnetic field)

large $\mathbf{R} \sim 10^{16}$ cm small $\mathbf{B'} \sim 10\text{--}100 \text{ G}$ large $\mathbf{\Gamma} > 500$ large $\gamma_{m} > 10^{4-5}$

Derishev 2007 Kumar & McMahon 2008 Daigne et al. 2011 Beniamini & Piran 2013,2014 Uhm & Zhang 2014

Breaks or BB components?

Page et al., 2011 Starling et al 2011, 2012 Guiriec et al. 2011, 2015,2016, 2017; Axelsson et al. 2012 Peng et al., 2014 Valan et al., 2018

Thermal component

Breaks or BB components?

Fig. 2. Comparison between the SBPL model (blue curve), SBPL+BB (green solid curve), and 2SBPL (red curve). Normalizations are arbitrary.

Summary

- Band model not sufficient to properly characterize prompt emission spectra [Guiriec + 11,13,15,16,17] [Burgess+14] [Yu + 2015]
- inclusion of third power-law segment at low energies (<1-100 keV)
 often improves the fit [Oganesyan+ 17,18] [Ravasio+17]
- the photon indices are consistent with expectations from synchrotron radiation [Oganesyan+ 17,18] [Ravasio+17]
- within a synchrotron interpretation: moderately fast cooling implies relatively small magnetic fields and large radii