The status of the Fermi-LAT γ-ray excess at the Galactic Center

Richard Bartels GRAPPA, University of Amsterdam <u>r.t.bartels@uva.nl</u>

Rencontres du Vietnam Very High Energy Phenomena in the Universe 2018 Aug. 12-18, Qui Nhon, Vietnam

University of Amsterdam

VHEPO, QUINNON, VIEtham, TZ August 2018

Goodenough & Hooper 2009, Vitale+ (Fermi coll.) 2009, Hooper & Goodenough 2011, Hooper & Linden 2011, Boyarsky+ 2011 (no signal), Abazajian & Kaplinghat 2012, Hooper & Slatyer 2013, Huang+ 2013, Gordon & Macias 2013, Macias & Gordon 2014, Zhou+2014, Abazajian+ 2014, Daylan+2014, Calore+ 2014, Gaggero+ 2015, Carlson+ 2015, Huang+ 2016, de Boer+ 2017, Fermi-LAT 2017, Macias+ 2017, Bartels+ 2018

White: Spatial template fitting analyses Yellow: Spectral template analyses Blue: Skyfact

A signal from dark matter?

A signal from dark matter?

(From traditional template fitting)

Spectrum

Morphology

Calore, Cholis & Weniger (2014)

Calore, Cholis, McCabe & Weniger (2015)

(From traditional template fitting)

Spectrum

Morphology

Calore, Cholis, McCabe & Weniger (2015)

Dark matter?
 Millisecond pulsars?

Calore, Cholis & Weniger (2014)

3) Something else?

(From traditional template fitting)

Spectrum

Morphology

Calore, Cholis & Weniger (2014)

Dark matter?
 Millisecond pulsars?
 Something else?

Calore, Cholis, McCabe & Weniger (2015)

spherically symmetric

(From traditional template fitting)

 10^{-1}

Spectrum

Calore, Cholis & Weniger (2014)

Dark matter? 1) Millisecond pulsars? 2) something else? 3)

Large systematic uncertainty. Calore et al. (2014) bracket this using different setups for the cosmic-ray propagation code <u>galprop</u>:

- **Diffusion constant**
- Halo properties
- Magnetic field
- Distribution of sources!!
- etc...

But this is still incomplete!

Observational summary (2014)

- Highly significant feature at the Galactic Center, confirmed by many groups and robust w.r.t. interstellar emission modelling
- Spectrum peaks at ~2 GeV
- Roughly spherically symmetric
- Olympic Unknown origin

Interpretation

Candidate	Spectrum	Morphology
Dark Matter		
MSPs		
Transient event		
Steady CR source		
Molecular clouds		

Richard Bartels (GRAPPA, Amsterdam)

Dark Matter 2

Calore et al. (2015b)

Dark Matter 2

Chances for DM

- There are DM hints compatible with the GCE:
 - Reticulum II dSph: excess —> More dwarf signals soon? (Geringer-Sameth+ 2016)
 - Anti-proton anomaly? (Cuoco+ 2016, Cui+ 2016)
- Chances at LHC?
 - GCE compatible with "natural" SUSY Achterberg+ 2015, van Beekveld+ 2016

Millisecond pulsars

- Old stars: likely to be found in the Bulge
 - Formed in-situ or from disrupted
 globular cluster (e.g. Brandt & Kocsis 2015)
- Correct spectrum
- $\mathcal{O}(10^4)$ MSPs can explain the GCE

Millisecond pulsars

- Old stars: likely to be found in the Bulge
 - Formed in-situ or from disrupted
 globular cluster (e.g. Brandt & Kocsis 2015)
- Correct spectrum
- $\mathcal{O}(10^4)$ MSPs can explain the GCE

 We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015

- We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015
- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b

- We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625),
 Hooper & Mohlabeng 2015
- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b
 - If the same as that of disk MSPs, we only expect a handful.

 We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015

- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b
 - If the same as that of disk MSPs, we only expect a handful.
 - Not surprising that they are not in the ATNF: likely unassociated (due to poor radio sensitivity).

 We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015

- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b
 - If the same as that of disk MSPs, we only expect a handful.
 - Not surprising that they are not in the ATNF: likely unassociated (due to poor radio sensitivity).
- Depends on the evolutionary channel MSPs. No bright LMXBs have to be present. Ploeg+ 2017, Bartels+ 2018b

 We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015

- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b
 - If the same as that of disk MSPs, we only expect a handful.
 - Not surprising that they are not in the ATNF: likely unassociated (due to poor radio sensitivity).
- Depends on the evolutionary channel MSPs. No bright LMXBs have to be present. Ploeg+ 2017, Bartels+ 2018b

 We should have detected many more γ-ray bright MSPs from the bulge.
 Hooper+ 2013 (1407.5625), Hooper & Mohlabeng 2015

 Given the ratio of bright LMXBs-to-MSPs in globular clusters. We should have seen more bright LMXBs in the bulge.
 Cholis+ 2014 (1407.5625), Haggard+ 2017 (1701.02726)

- This depends on the luminosity function. Yuan & Zhang 2014, Petrovic+ 2014, Ploeg+ 2017, Bartels+ 2018b
 - If the same as that of disk MSPs, we only expect a handful.
 - Not surprising that they are not in the ATNF: likely unassociated (due to poor radio sensitivity).
- Depends on the evolutionary channel MSPs. No bright LMXBs have to be present. Ploeg+ 2017, Bartels+ 2018b

<u>Bottom-line:</u> MSPs in the bulge face no serious difficulties.

Interpretation: summary

Candidate	Spectrum	Morphology	
Dark Matter			
MSPs			
Transient event			
Steady CR source			
Molecular clouds			

Richard Bartels (GRAPPA, Amsterdam)

Transient event

- Active past of the GC
 Petrovic+ 2014, Carlson+ 2014,
 Cholis+ 2015
- Protons: cannot reproduce the morphology
- Electrons: could work...

Cholis et al. (2015)

Transient event

- Active past of the GC
 Petrovic+ 2014, Carlson+ 2014,
 Cholis+ 2015
- Protons: cannot reproduce the morphology
- Electrons: could work...

10⁶ years

Transient event

- Active past of the GC
 Petrovic+ 2014, Carlson+ 2014,
 Cholis+ 2015
- Protons: cannot reproduce the morphology
- Electrons: could work...

10⁶ years

Molecular clouds

- de Boer+ 2017 use a Spectral template fit!
- CRs interact with molecular clouds
- Spectrum due to solar-modulation-like effect: prevents low-energy CRs from entering cloud

Steady CR source

 Additional source of CRs in the Galactic Center!!! Gaggero et al. (2015); Carlson et al. (2016)
 But spectrum ...

Richard Bartels (GRAPPA, Amsterdam)
Steadv CR source

Even if it does not absorb all of the GCE, additional CR injection can alter the GCE characteristics! (Carlson et al, 2016; Fermi-LAT 2017)

It will contribute to some extent!

he Galactic

6

8

Galactocentric Radius [kpc]

et al. (2016)

Carlson et al. (2016)

Richard Bartels (GRAPPA, Amsterdam)

10

 $f_{\rm H2} = 0.2 + \rm SNR$

Yusifov (Pulsars) Lorimer (Pulsars)

SNR CB98 SNR G15

OB Stars

12

14

CR Source Surface Densit

 10^{0}

 10^{-1}

2

Interpretation: summary

Candidate	Spectrum	Morphology	
Dark Matter			
MSPs			
Transient event	?	?	
CR source	?	?	
Molecular clouds		**	

Interpretation: summary

How to tell two ducks apart?

dark matter only

point sources only

DM or MSPs? or: diffuse vs. point-like

- If MSPs cause the GCE, they are likely dim and not yet identified as point sources.
- Now ~4 complementary methods to study this
 - 1. Wavelets RB+ 2015 (but also see Balaji+ 2018)
 - 2. NPTF Lee+ 2015
 - 3. Deep Learning Caron+ 2017
 - 4. Spectral classification of source Ajello+ 2015

DN or MSPs? or: diffuse vs. point-like

- If MSPs cause the GCE, they are likely dim and not yet identified as point sources.
- Now ~4 complementary methods to study this
 - 1. Wavelets RB+ 2015 (but also see Balaji+ 2018)
 - 2. NPTF Lee+ 2015
 - 3. Deep Learning Caron+ 2017
 - 4. Spectral classification of source Ajello+ 2015

DN or MSPs? or: diffuse vs. point-like

- If MSPs cause the GCE, they are likely dim and not yet identified as point sources.
- Now ~4 complementary methods to study this
 - 1. Wavelets RB+ 2015 (but also see Balaji+ 2018)
 - 2. NPTF Lee+ 2015
 - 3. Deep Learning Caron+ 2017
 - 4. Spectral classification of source Ajello+ 2015

Lee et al. PRL 116 (2016)

Template fitting analysis including a nonpoissonian templates (Here: NFW PS).

Deep Learning

Caron et al., JCAP 1805 (2018) no.05, 058

ConvNet (for image recognition)

Deep Learning

Caron et al., JCAP 1805 (2018) no.05, 058

- ConvNet (for image recognition)
- Predict $f_{src} = 0.887 \pm 0.105$ on subset of the data.

Deep Learning

Caron et al., JCAP 1805 (2018) no.05, 058

- ConvNet (for image recognition)
- Predict f_{src} = 0.887±0.105 on subset of the data.
- o Under further development!

Fermi-LAT, arXiv:1705.00009

 Using the detected γ-ray MSPs alone there is no evidence for or against a bulge population.

Fermi-LAT, arXiv:1705.00009

- Using the detected γ-ray MSPs alone there is no evidence for or against a bulge population.
- Ajello et al. 2017 derived a new source catalog (2FIG) and developed a custom sensitivity map for finding "pulsar-like" sources.

Fermi-LAT, arXiv:1705.00009

- Using the detected γ-ray MSPs alone there is no evidence for or against a bulge population.
- Ajello et al. 2017 derived a new source catalog (2FIG) and developed a custom sensitivity map for finding "pulsar-like" sources.
- First claimed detection of bulge population, however, see Bartels et al. 2017 (arXiv:1710.10266).

Fermi-LAT, arXiv:1705.00009

- Using the detected γ-ray MSPs alone there is no evidence for or against a bulge population.
- Ajello et al. 2017 derived a new source catalog (2FIG) and developed a custom sensitivity map for finding "pulsar-like" sources.
- First claimed detection of bulge population, however, see Bartels et al. 2017 (arXiv:1710.10266).

Photon clustering summary

- Corroborative evidence for bulge sources
- Caveat: do we model the small scale gas correctly?

Assumed background

True background

γ-rays alone unlikely to provide a definitive answer.

Photon clustering summary

- Corroborative evidence for bulge sources
- Caveat: do we model the small scale gas correctly?
 Looks like a point

Looks like a point source

Assumed background

True background

γ-rays alone unlikely to provide a definitive answer.

https://www.nasa.gov/mission_pages/sunearth/news/gallery/galaxy-location.html

https://www.nasa.gov/mission_pages/sunearth/news/gallery/galaxy-location.html

Key ingredients are missing in early analyses:

- Key ingredients are missing in early analyses:
 - No central source population Gaggero+ 2015, Carlson+ 2016

- Key ingredients are missing in early analyses:
 - No central source population Gaggero+ 2015, Carlson+ 2016
 - Models of target material (gas and ISRF) incomplete

- Key ingredients are missing in early analyses:
 - No central source population Gaggero+ 2015, Carlson+ 2016
 - Models of target material (gas and ISRF) incomplete
- New (3D) models recently became available in *galprop* for the ISRF, gas and sources. Includes Bulge! Porter+ 2017, Johannesson+ 2018 (also see Ajello+ 2016) See G. Johannesson, Tuesday@16.20

VHEPU, Qui Nhon, Vietnam, 12 August 2018

- Key ingredients are missing in early analyses:
 - No central source population Gaggero+ 2015, Carlson+ 2016
 - Models of target material (gas and ISRF) incomplete
- New (3D) models recently became available in *galprop* for the ISRF, gas and sources. Includes Bulge! Porter+ 2017, Johannesson+ 2018 (also see Ajello+ 2016) See G. Johannesson, Tuesday@16.20

Have not yet been applied in analyses of the GCE

SkyFACT in a Nutshell

Hybrid between image reconstruction & template fitting

Original Template

SkyFACT in a Nutshell

Hybrid between image reconstruction & template fitting

Best-fit Template

SkyFACT in a Nutshell

Hybrid between image reconstruction & template fitting

This means: freedom in spectral and spatial templates to adapt to errors/incompleteness!

Best-fit Template

e.g. "dark gas"

Revisit GCE morpholgy

RB, Storm, Weniger & Calore, Nature Astronomy (2018)

Use usual templates, but with modulation

r5_RCG_NB_msp 20 10 $b \; [deg]$ -10-2060 4020-20-60-8080 0 -40 $\ell \, [\text{deg}]$

Isotropic

Richard Bartels (GRAPPA, Amsterdam)

VHEPU, Qui Nhon, Vietnam, 12 August 2018

DM vs. Galactic Bulge

DM vs. Galactic Bulge

Richard Bartels (GRAPPA, Amsterdam)

VHEPU, Qui Nhon, Vietnam, 12 August 2018

Richard Bartels (GRAPPA, Amsterdam)

VHEPU, Qui Nhon, Vietnam, 12 August 2018

X-shaped GCE

Macias et al., Nature Astronomy (2018)

- Macias+ 2018 use new gas models in the inner galaxy.
- Nuclear bulge + X-shaped or boxy-bulge preferred over NFW

X-shaped GCE

Macias et al., Nature Astronomy (2018)

- Macias+ 2018 use new gas models in the inner galaxy.
- Nuclear bulge + X-shaped or boxy-bulge preferred over NFW

X-shaped GCE

Macias et al., Nature Astronomy (2018)

- Macias+ 2018 use new gas models in the inner 0 galaxy.
- Nuclear bulge + X-shaped or boxy-bulge 0 preferred over NFW

ROI

+**0**°

358°

4

359°

3

From here:
1. We find complementary DM evidence!

1. We find complementary DM evidence!

2. Other correlations

1. We find complementary DM evidence!

2. Other correlations

- High energy tail Petrovic+ 2015; Yuan & Ioka 2014; Linden+ 2015, Horiuchi+ 2016

29

1. We find complementary DM evidence!

1. We find complementary DM evidence!

2. Other correlations

- High energy tail
 Petrovic+ 2015; Yuan & Ioka 2014; Linden+ 2015, Horiuchi+ 2016
- Connection to PeV emission from the GC? Hooper & Linden 2018; Guepin+ 2018

1. We find complementary DM evidence!

2. Other correlations

- High energy tail
 Petrovic+ 2015; Yuan & Ioka 2014; Linden+ 2015, Horiuchi+ 2016
- Connection to PeV emission from the GC? Hooper & Linden 2018; Guepin+ 2018
- Connection with 511 keV positron annihilation signal? Crocker+ 2016, Bartels+ 2018c

1. We find complementary DM evidence!

2. Other correlations

- High energy tail
 Petrovic+ 2015; Yuan & Ioka 2014; Linden+ 2015, Horiuchi+ 2016
- Connection to PeV emission from the GC? Hooper & Linden 2018; Guepin+ 2018
- Connection with 511 keV positron annihilation signal? Crocker+ 2016, Bartels+ 2018c

3. Directly detect the bulge source population with improved catalogs (2FIG, 4FGL).

E.g. Ajello et al. (2017) or Saz-Parkinson et al. (2016) J. Ballet, Friday@11.00

1. We find complementary DM evidence!

2. Other correlations

- High energy tail
 Petrovic+ 2015; Yuan & Ioka 2014; Linden+ 2015, Horiuchi+ 2016
- Connection to PeV emission from the GC? Hooper & Linden 2018; Guepin+ 2018
- Connection with 511 keV positron annihilation signal? Crocker+ 2016, Bartels+ 2018c

3. Directly detect the bulge source population with improved catalogs (2FIG, 4FGL).

E.g. Ajello et al. (2017) or Saz-Parkinson et al. (2016)

J. Ballet, Friday@11.00

4. If MSPs: present (Meerkat) and upcoming (SKA) <u>radio</u> surveys will likely detect bulge MSPs! Calore et al. 2016

Radio prospects

The current status

- The GCE is a significant feature that so-far stood the test of time (9 years) despite ever improving background models.
- Although its characteristics have been altered.
 No longer preference for NFW with γ~1.26
- ~50 GeV DM and bulge MSPs look very similar...
- Series Evidence in favour of MSPs is slowly accumulating
- Improved γ-ray analyses can maybe teach us a little more, but radio will probably be the next breakthrough.