

22-July-2017 @Quy Nhon

The Hyper-Kamiokande project

Yasuo Takeuchi Kobe University

Hyper-Kamiokande detector & current R&Ds
Current status of the project
Physics/Observation targets in HK
Summary

Hyper-Kamiokande proto-collaboration

 Formed in January 2015
 ~300 members, 75 institutions, from 15 countries (as of April 2017)
 ~70% from oversea countries

Proto-collaboration meeting at Queen Mary University of London, July 2016

Hyper-Kamiokande detector

Inner Detector (ID): ~40,000 of new 50-cm photo sensors Outer Detector (OD): ~6,700 of new 20-cm photo sensors

<u>New 50 cm PMT for HK</u>

- Current performance of new 50 cm PMT
 - SK-PMT x2 photon detection
 - SK-PMT x2 timing resolution (~1.1ns)
 - Higher pressure tolerance (> 80 m)
 - Dark rate: 7.5 kHz (as of 2016)

• \rightarrow trying to reduce to SK-PMT level (< 4kHz)

<u>R&D of Ni-Cf deployment system</u>

- Ni+Cf source: total ~9 MeV gamma rays
- Automated deployment by a sequencer
- Position precision: +/-5mm
- Will be used (=demonstrated) in SK
- Deep water test (~35m) was done at National Maritime Research Institute

Science

<u>R&D of Ni-Cf deployment system</u>

- Ni+Cf source: total ~9 MeV gamma rays
- Automated deployment by a sequencer
- Position precision: +/-5mm
- Will be used (=demonstrated) in SK
- Deep water test (~35m) was done at National Maritime Research Institute

Precise movement of the Ni-Cf calibration source is obtained. \rightarrow applied to safe operation

Current status of the project

- Design Report is reviewed by Hyper-K Advisory Committee
 - KEK Preprint 2016-21, ICRR-Report-701-2016-1
- Strong commitment from host institutions (ICRR, U. Tokyo & KEK)
- Strong support from Japanese communities
 - Cosmic-ray (CRC) and high-energy (JAHEP)
- Science Council of Japan has selected HK as one of top priority large-scale research projects in "Master Plan 2017"
- MEXT is evaluating HK, and will soon release "Roadmap 2017" MEXT MEXT IS EVALUATED TO A MEXT IS EVALUATED.
 - HK is listed in the preliminary version of the Roadmap released on July 18.
- Budget request is being submitted to start construction in JFY 2018. (Aiming to start observation in 2026)

Physics/Observation targets in HK

- Accelerator based neutrinos
- Atmospheric neutrinos
- Solar neutrinos
- Supernova neutrinos
- Other astrophysical neutrinos
 - WIMP searches, solar flare, GRB, ...
- Nucleon decay
- Neutrino geophysics

Atmospheric

Accelerator based neutrinos

- Common base line, same offaxis (2.5 degree) narrow band, high beam power (1.3 MW)
 - In 2016, KEK Project Implementation Plan put first priority to "J-PARC upgrade for Hyper-K"
- Huge statistics with high S/N
 - ~3000 appearance signals [/10yr]

Hyper-K

J-PARC Accelerator Complex

Expected events in Hyper-K CPV Study

Number of signal candidate events, $1.3 \text{ MW} \times 10 \text{ years}$ (10⁸ sec), v: $\overline{v} = 1:3$

				background	
for δ _{CP} = 0	Signal v _µ →v _e CC	Wrong sign appearance	v_{μ} + \overline{v}_{μ} CC	Beam $v_e + \overline{v_e}$ contamination	NC
v beam	1,643	15	7	259	134
v beam	1,183	206	4	317	196

Neutrino mode: appearance

Antineutrino mode: appearance

Expected sensitivity on CPV

Mass hierarchy determination in HK

- Difference of matter effect in Earth could be seen in upward-going multi-GeV v_e sample in atmospheric neutrinos
- Combine Atmospheric v + Beam v data to study mass hierarchy
 - Precise oscillation parameters: from beam v
 - Mass ordering effect: from atmospheric v

Mass hierarchy sensitivity in HK

Mass hierarchy /θ₂₃ octant determination within several years for the nearly entire parameter space

Solar neutrinos

- High statistics measurement of ⁸B solar neutrinos
 - Possible time variation of the flux
 - Energy spectrum distortion due to solar matter effect
 - Day-night flux asymmetry due to earth matter effect

$$A_{DN} = \frac{(Day - Night)}{(Day + Night)/2}$$

Solar neutrino measurements in HK

Spectrum upturn

Solar hep neutrino

Integrated # of expected solar neutrino events

Energy resolution (= high photon detection) is essential.

Supernova burst neutrinos

- 52-79 k events / SN at 10 kpc (in 0.22 Mt FV)
 - ~10 events / SN in Andromeda
- Precise time profile, energy profile
 - 3% level SASI could be detected from 90% of SN in our Galaxy
- Multi messenger performance:

~1 degree (opening angle) determination of direction of SN at 10 kpc

Supernova relic neutrinos

- Supernova relic neutrino (SRN) or Diffuse supernova neutrino background (DSNB)
- Accumulation of past SN bursts
- Spectrum depends on the time when SN burst
- Early time → larger red shift → low temperature
- SK-Gd is expected to discover SRN

Supernova relic neutrinos

Goal of HK: measure energy spectrum of SRN

- Study history of star formation / black hole formation
- Expected 70+/-17 events in HK 10 years (4 σ to non-zero)
 - **5** years (15 years) \rightarrow 3 σ (5 σ)

Nucleon decays

- For e+π⁰ mode, atmospheric v background could be reduced by better neutron tagging
 - 0.06 BG event/Mton·year
- For v+K⁺ mode, K⁺ identification efficiency improved by new PMTs

Expected distributions of $p \rightarrow e + \pi^0$

Predictions & experiments of proton decay

Summary

- Hyper-Kamiokande will have a rich program with world-leading science output.
 - Leptonic CP violation, Mass hierarchy, precise neutrino oscillation study, supernova neutrinos, indirect WIMP searches, nucleon decays, neutrino geophysics, ...

Project being accelerated towards an early approval.

- Strong supports from Japanese communities and host institutions
- Good evaluation from Science Council of Japan
- Listed in the preliminary version of the Roadmap by MEXT
- Budget request is being issued in Japan to start construction in JFY 2018
- Open for new participations.